Arnaud Morlier, M. Siebert, I. Kunze, S. Blankemeyer, M. Köntges
{"title":"Ultraviolet fluorescence of ethylene-vinyl acetate in photovoltaic modules as estimation tool for yellowing and power loss","authors":"Arnaud Morlier, M. Siebert, I. Kunze, S. Blankemeyer, M. Köntges","doi":"10.1109/PVSC.2018.8547290","DOIUrl":null,"url":null,"abstract":"The potential of ultraviolet (UV) fluorescence as a field technique for photovoltaic module defect detection was demonstrated recently. Here we study the formation rate of the fluorophores in module encapsulating material under UV illumination. We observe a correlation between the decrease in visible light transmission of the encapsulant and UV fluorescence intensity. This correlation allows estimating the yellowing-induced power loss via fluorescence measurements.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"15 1","pages":"1597-1602"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8547290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The potential of ultraviolet (UV) fluorescence as a field technique for photovoltaic module defect detection was demonstrated recently. Here we study the formation rate of the fluorophores in module encapsulating material under UV illumination. We observe a correlation between the decrease in visible light transmission of the encapsulant and UV fluorescence intensity. This correlation allows estimating the yellowing-induced power loss via fluorescence measurements.