A Density Discriminant Index for Cluster Validation

Supphawarich Thanarattananakin, P. Padungweang, Worarat Krathu
{"title":"A Density Discriminant Index for Cluster Validation","authors":"Supphawarich Thanarattananakin, P. Padungweang, Worarat Krathu","doi":"10.1109/ICITEED.2019.8929981","DOIUrl":null,"url":null,"abstract":"Clustering analysis is widely applied in several domains of study. Using a suitable number of clusters is one of the most important factors to influence the performance of clustering. Several algorithms of cluster validation have been developed to find such a number. In this paper, we proposed a method for cluster validation adapted from the Discrimination Evaluation via Optic Diffraction Analysis (DEODA) algorithm to derive an appropriate number of clusters. In particular, our method uses DEODA to perform within- and between-cluster discrimination analysis in order to find the suitable number of clusters. We evaluate our method by comparing similarity score against the existing cluster validation algorithm i.e., the Silhouette index. The results show that the similarity scores derived from our method are higher than results yielded from the Silhouette index.","PeriodicalId":6598,"journal":{"name":"2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"31 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2019.8929981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Clustering analysis is widely applied in several domains of study. Using a suitable number of clusters is one of the most important factors to influence the performance of clustering. Several algorithms of cluster validation have been developed to find such a number. In this paper, we proposed a method for cluster validation adapted from the Discrimination Evaluation via Optic Diffraction Analysis (DEODA) algorithm to derive an appropriate number of clusters. In particular, our method uses DEODA to perform within- and between-cluster discrimination analysis in order to find the suitable number of clusters. We evaluate our method by comparing similarity score against the existing cluster validation algorithm i.e., the Silhouette index. The results show that the similarity scores derived from our method are higher than results yielded from the Silhouette index.
聚类验证的密度判别指标
聚类分析在许多研究领域得到了广泛的应用。使用合适数量的聚类是影响聚类性能的最重要因素之一。为了找到这样一个数字,已经开发了几种聚类验证算法。本文提出了一种基于光学衍射分析(DEODA)算法的聚类验证方法,以获得合适的聚类数量。特别是,我们的方法使用DEODA进行聚类内和聚类之间的判别分析,以找到合适的聚类数量。我们通过比较相似性得分与现有的聚类验证算法(即Silhouette指数)来评估我们的方法。结果表明,我们的方法得到的相似度分数高于剪影指数得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信