A Collaborative Framework for Structure Identification over Print Documents

Maeda F. Hanafi, M. Mannino, A. Abouzeid
{"title":"A Collaborative Framework for Structure Identification over Print Documents","authors":"Maeda F. Hanafi, M. Mannino, A. Abouzeid","doi":"10.1145/3328519.3329131","DOIUrl":null,"url":null,"abstract":"We describe Texture, a framework for data extraction over print documents that allows end-users to construct data extraction rules over an inferred document structure. To effectively infer this structure, we enable developers to contribute multiple heuristics that identify different structures in English print documents, crowd-workers and annotators to manually label these structures, and end-users to search and decide which heuristics to apply and how to boost their performance with the help of ground-truth data collected from crowd-workers and annotators. Texture's design supports each of these different user groups through a suite of tools. We demonstrate that even with a handful of student-developed heuristics, we can achieve reasonable precision and recall when identifying structures across different document collections.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328519.3329131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe Texture, a framework for data extraction over print documents that allows end-users to construct data extraction rules over an inferred document structure. To effectively infer this structure, we enable developers to contribute multiple heuristics that identify different structures in English print documents, crowd-workers and annotators to manually label these structures, and end-users to search and decide which heuristics to apply and how to boost their performance with the help of ground-truth data collected from crowd-workers and annotators. Texture's design supports each of these different user groups through a suite of tools. We demonstrate that even with a handful of student-developed heuristics, we can achieve reasonable precision and recall when identifying structures across different document collections.
基于打印文档的结构识别协同框架
我们描述了Texture,一个用于从打印文档中提取数据的框架,它允许最终用户在推断的文档结构上构建数据提取规则。为了有效地推断这种结构,我们允许开发人员贡献多种启发式方法来识别英语打印文档中的不同结构,让众工和注释者手动标记这些结构,让最终用户搜索并决定应用哪种启发式方法,以及如何在众工和注释者收集的真实数据的帮助下提高他们的性能。Texture的设计通过一套工具支持这些不同的用户组。我们证明,即使使用少量学生开发的启发式方法,在识别跨不同文档集合的结构时,我们也可以达到合理的精度和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信