Mining big data: current status, and forecast to the future

Wei Fan, A. Bifet
{"title":"Mining big data: current status, and forecast to the future","authors":"Wei Fan, A. Bifet","doi":"10.1145/2481244.2481246","DOIUrl":null,"url":null,"abstract":"Big Data is a new term used to identify datasets that we can not manage with current methodologies or data mining software tools due to their large size and complexity. Big Data mining is the capability of extracting useful information from these large datasets or streams of data. New mining techniques are necessary due to the volume, variability, and velocity, of such data. The Big Data challenge is becoming one of the most exciting opportunities for the years to come. We present in this issue, a broad overview of the topic, its current status, controversy, and a forecast to the future. We introduce four articles, written by influential scientists in the field, covering the most interesting and state-of-the-art topics on Big Data mining.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"70 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"801","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2481244.2481246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 801

Abstract

Big Data is a new term used to identify datasets that we can not manage with current methodologies or data mining software tools due to their large size and complexity. Big Data mining is the capability of extracting useful information from these large datasets or streams of data. New mining techniques are necessary due to the volume, variability, and velocity, of such data. The Big Data challenge is becoming one of the most exciting opportunities for the years to come. We present in this issue, a broad overview of the topic, its current status, controversy, and a forecast to the future. We introduce four articles, written by influential scientists in the field, covering the most interesting and state-of-the-art topics on Big Data mining.
挖掘大数据:现状,展望未来
大数据是一个新术语,用于识别由于其庞大和复杂而无法用当前方法或数据挖掘软件工具管理的数据集。大数据挖掘是从这些大数据集或数据流中提取有用信息的能力。由于这些数据的体积、可变性和速度,新的挖掘技术是必要的。大数据挑战正在成为未来几年最令人兴奋的机遇之一。在本期中,我们对该主题进行了概述,其现状,争议,并对未来进行了预测。我们介绍了四篇由该领域有影响力的科学家撰写的文章,涵盖了大数据挖掘领域最有趣和最先进的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信