Roadside acoustic sensors to support vulnerable pedestrians via their smartphone

Masoomeh Khalili, M. Ghatee, M. Teimouri, Mohammad Mahdi Bejani
{"title":"Roadside acoustic sensors to support vulnerable pedestrians via their smartphone","authors":"Masoomeh Khalili, M. Ghatee, M. Teimouri, Mohammad Mahdi Bejani","doi":"10.22060/ajmc.2019.15479.1017","DOIUrl":null,"url":null,"abstract":"We propose a new warning system based on smartphones that evaluates the risk of motor vehicle for vulnerable pedestrian (VP). The acoustic sensors are embedded in roadside to receive vehicles sounds and they are classified into heavy vehicle, light vehicle with low speed, light vehicle with high speed, and no vehicle classes. For this aim, we extract new features by Mel-frequency Cepstrum Coefficients (MFCC) and Linear Predictive Coefficients (LPC) algorithms. We use different classification algorithms and show that MLP neural network achieves at least 96.77% in accuracy criterion. To install this system, directional microphones are embedded on roadside and the risk is classified there. Then, for every microphone, a danger area is defined and the warning alarms have been sent to every VPs smartphones covered in this danger area.","PeriodicalId":8487,"journal":{"name":"arXiv: Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22060/ajmc.2019.15479.1017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new warning system based on smartphones that evaluates the risk of motor vehicle for vulnerable pedestrian (VP). The acoustic sensors are embedded in roadside to receive vehicles sounds and they are classified into heavy vehicle, light vehicle with low speed, light vehicle with high speed, and no vehicle classes. For this aim, we extract new features by Mel-frequency Cepstrum Coefficients (MFCC) and Linear Predictive Coefficients (LPC) algorithms. We use different classification algorithms and show that MLP neural network achieves at least 96.77% in accuracy criterion. To install this system, directional microphones are embedded on roadside and the risk is classified there. Then, for every microphone, a danger area is defined and the warning alarms have been sent to every VPs smartphones covered in this danger area.
路边的声学传感器可以通过智能手机为脆弱的行人提供支持
本文提出了一种基于智能手机的机动车对弱势行人(VP)风险评估的预警系统。声学传感器嵌入路边接收车辆声音,分为重型车辆、低速轻型车辆、高速轻型车辆和无车辆类别。为此,我们采用Mel-frequency倒频谱系数(MFCC)和线性预测系数(LPC)算法提取新的特征。使用不同的分类算法,结果表明,MLP神经网络的准确率至少达到96.77%。为了安装该系统,在路边嵌入定向麦克风,并在那里进行风险分类。然后,为每个麦克风定义一个危险区域,并将警告警报发送到该危险区域覆盖的每个副总裁的智能手机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信