{"title":"Adaptive Data Skipping in Main-Memory Systems","authors":"Wilson Qin, Stratos Idreos","doi":"10.1145/2882903.2914836","DOIUrl":null,"url":null,"abstract":"As modern main-memory optimized data systems increasingly rely on fast scans, lightweight indexes that allow for data skipping play a crucial role in data filtering to reduce system I/O. Scans benefit from data skipping when the data order is sorted, semi-sorted, or comprised of clustered values. However data skipping loses effectiveness over arbitrary data distributions. Applying data skipping techniques over non-sorted data can significantly decrease query performance since the extra cost of metadata reads result in no corresponding scan performance gains. We introduce adaptive data skipping as a framework for structures and techniques that respond to a vast array of data distributions and query workloads. We reveal an adaptive zonemaps design and implementation on a main-memory column store prototype to demonstrate that adaptive data skipping has potential for 1.4X speedup.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2914836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
As modern main-memory optimized data systems increasingly rely on fast scans, lightweight indexes that allow for data skipping play a crucial role in data filtering to reduce system I/O. Scans benefit from data skipping when the data order is sorted, semi-sorted, or comprised of clustered values. However data skipping loses effectiveness over arbitrary data distributions. Applying data skipping techniques over non-sorted data can significantly decrease query performance since the extra cost of metadata reads result in no corresponding scan performance gains. We introduce adaptive data skipping as a framework for structures and techniques that respond to a vast array of data distributions and query workloads. We reveal an adaptive zonemaps design and implementation on a main-memory column store prototype to demonstrate that adaptive data skipping has potential for 1.4X speedup.