Artificial neural network-based induction motor fault classifier using continuous wavelet transform

A. U. Jawadekar, Sudhir Paraskar, S. Jadhav, G. Dhole
{"title":"Artificial neural network-based induction motor fault classifier using continuous wavelet transform","authors":"A. U. Jawadekar, Sudhir Paraskar, S. Jadhav, G. Dhole","doi":"10.1080/21642583.2014.956266","DOIUrl":null,"url":null,"abstract":"Induction motors are used in industrial, commercial and residential applications because they have considerable merits over other types of electric motors. These motors are used in various operating stresses that give rise to faults. Most recurrent faults in induction motors are bearing faults, stator interturn faults and cracked rotor bars. Early detection of induction motor faults is crucial for their reliable and economical operation. This could be done by motor monitoring, incipient fault detection and diagnosis. In many situations, failure of critically loaded machine can shut down an entire industry process. This growing demand for high-quality and low-cost production has increased the need for automated manufacturing systems with effective monitoring and control capabilities. Condition monitoring and fault diagnosis of an induction motor are of great importance in the production line. It can reduce the cost of maintenance and risk of unexpected failures by allowing the early detection of catastrophic failures. This work documents experimental results for multiple fault detection in induction motors using signal-processing and artificial neural network-based approaches. Motor line currents recorded under various fault conditions were analyzed using continuous wavelet transform. A feedforward neural network was used for fault characterization based on fault features extracted using continuous wavelet transform.","PeriodicalId":22127,"journal":{"name":"Systems Science & Control Engineering: An Open Access Journal","volume":"80 1","pages":"684 - 690"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering: An Open Access Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2014.956266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Induction motors are used in industrial, commercial and residential applications because they have considerable merits over other types of electric motors. These motors are used in various operating stresses that give rise to faults. Most recurrent faults in induction motors are bearing faults, stator interturn faults and cracked rotor bars. Early detection of induction motor faults is crucial for their reliable and economical operation. This could be done by motor monitoring, incipient fault detection and diagnosis. In many situations, failure of critically loaded machine can shut down an entire industry process. This growing demand for high-quality and low-cost production has increased the need for automated manufacturing systems with effective monitoring and control capabilities. Condition monitoring and fault diagnosis of an induction motor are of great importance in the production line. It can reduce the cost of maintenance and risk of unexpected failures by allowing the early detection of catastrophic failures. This work documents experimental results for multiple fault detection in induction motors using signal-processing and artificial neural network-based approaches. Motor line currents recorded under various fault conditions were analyzed using continuous wavelet transform. A feedforward neural network was used for fault characterization based on fault features extracted using continuous wavelet transform.
基于连续小波变换的人工神经网络感应电机故障分类器
感应电动机用于工业、商业和住宅应用,因为它们比其他类型的电动机具有相当大的优点。这些电动机在各种工作应力下使用,会产生故障。在异步电动机中,最常见的故障是轴承故障、定子匝间故障和转子条裂纹。早期发现异步电动机的故障是保证异步电动机可靠、经济运行的关键。这可以通过电机监测、早期故障检测和诊断来实现。在许多情况下,临界负载机器的故障可以关闭整个工业过程。对高质量和低成本生产的日益增长的需求增加了对具有有效监测和控制能力的自动化制造系统的需求。异步电动机的状态监测和故障诊断在生产线上具有重要意义。它可以通过允许早期检测灾难性故障来降低维护成本和意外故障的风险。这项工作记录了使用信号处理和基于人工神经网络的方法进行感应电机多故障检测的实验结果。采用连续小波变换对不同故障状态下记录的电机线路电流进行分析。在连续小波变换提取故障特征的基础上,采用前馈神经网络进行故障表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信