Grain-Size Effects on the Deformation in Nanocrystalline Multi-Principal Element Alloy

A. Roy, R. Devanathan, Duane D. Johnson, G. Balasubramanian
{"title":"Grain-Size Effects on the Deformation in Nanocrystalline Multi-Principal Element Alloy","authors":"A. Roy, R. Devanathan, Duane D. Johnson, G. Balasubramanian","doi":"10.2139/ssrn.3797413","DOIUrl":null,"url":null,"abstract":"Multi-principal element alloys (MPEAs) continue to garner interest due to their remarkable mechanical properties, especially at elevated temperatures. Here, we examine a representative nanocrystalline refractory MPEA and identify a crossover from a Hall-Petch to inverse-Hall-Petch relation. While the considered MPEA predominantly assumes a single-phase BCC lattice, the presence of grain boundaries imparts amorphous phase distributions that increase with decreasing grain size (i.e., increasing grain boundary volume fraction). Using molecular dynamics simulations, we find that the yield strength of the MPEA increases with decreasing average grain size, but below a critical grain size < 23.2 nm the yield strength decreases. This change in the deformation behavior is driven by the transition from dislocation slip to grain-boundary slip as the predominant mechanism. Our results reveal that the change from Hall-Petch to inverse-Hall-Petch regime is correlated to dislocation stacking at the grain boundary when dislocation density reaches a maximum.","PeriodicalId":10639,"journal":{"name":"Computational Materials Science eJournal","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3797413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Multi-principal element alloys (MPEAs) continue to garner interest due to their remarkable mechanical properties, especially at elevated temperatures. Here, we examine a representative nanocrystalline refractory MPEA and identify a crossover from a Hall-Petch to inverse-Hall-Petch relation. While the considered MPEA predominantly assumes a single-phase BCC lattice, the presence of grain boundaries imparts amorphous phase distributions that increase with decreasing grain size (i.e., increasing grain boundary volume fraction). Using molecular dynamics simulations, we find that the yield strength of the MPEA increases with decreasing average grain size, but below a critical grain size < 23.2 nm the yield strength decreases. This change in the deformation behavior is driven by the transition from dislocation slip to grain-boundary slip as the predominant mechanism. Our results reveal that the change from Hall-Petch to inverse-Hall-Petch regime is correlated to dislocation stacking at the grain boundary when dislocation density reaches a maximum.
晶粒尺寸对纳米晶多主元素合金变形的影响
多主元素合金(MPEA)由于其卓越的力学性能,特别是在高温下,继续引起人们的兴趣。在这里,我们研究了一种具有代表性的纳米晶耐火MPEA,并确定了从Hall-Petch到逆Hall-Petch关系的交叉。虽然所考虑的MPEA主要采用单相BCC晶格,但晶界的存在赋予非晶相分布随着晶粒尺寸的减小而增加(即晶界体积分数的增加)。通过分子动力学模拟,我们发现MPEA的屈服强度随着平均晶粒尺寸的减小而增加,但低于临界晶粒尺寸<23.2 nm屈服强度降低。这种变形行为的变化是由位错滑移向晶界滑移转变所驱动的。结果表明,当位错密度达到最大值时,由Hall-Petch向逆Hall-Petch转变与晶界位错堆积有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信