(Gap/S)ETH hardness of SVP

Divesh Aggarwal, Noah Stephens-Davidowitz
{"title":"(Gap/S)ETH hardness of SVP","authors":"Divesh Aggarwal, Noah Stephens-Davidowitz","doi":"10.1145/3188745.3188840","DOIUrl":null,"url":null,"abstract":"We prove the following quantitative hardness results for the Shortest Vector Problem in the ℓp norm (SVP_p), where n is the rank of the input lattice. For “almost all” p > p0 ≈ 2.1397, there is no 2n/Cp-time algorithm for SVP_p for some explicit (easily computable) constant Cp > 0 unless the (randomized) Strong Exponential Time Hypothesis (SETH) is false. (E.g., for p ≥ 3, Cp < 1 + (p+3) 2−p + 10 p2 2−2p.) For any 1 ≤ p ≤ ∞, there is no 2o(n)-time algorithm for SVP_p unless the non-uniform Gap-Exponential Time Hypothesis (Gap-ETH) is false. Furthermore, for each such p, there exists a constant γp > 1 such that the same result holds even for γp-approximate SVP_p. For p > 2, the above statement holds under the weaker assumption of randomized Gap-ETH. I.e., there is no 2o(n)-time algorithm for γp-approximate SVP_p unless randomized Gap-ETH is false. See http://arxiv.org/abs/1712.00942 for a complete exposition.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

We prove the following quantitative hardness results for the Shortest Vector Problem in the ℓp norm (SVP_p), where n is the rank of the input lattice. For “almost all” p > p0 ≈ 2.1397, there is no 2n/Cp-time algorithm for SVP_p for some explicit (easily computable) constant Cp > 0 unless the (randomized) Strong Exponential Time Hypothesis (SETH) is false. (E.g., for p ≥ 3, Cp < 1 + (p+3) 2−p + 10 p2 2−2p.) For any 1 ≤ p ≤ ∞, there is no 2o(n)-time algorithm for SVP_p unless the non-uniform Gap-Exponential Time Hypothesis (Gap-ETH) is false. Furthermore, for each such p, there exists a constant γp > 1 such that the same result holds even for γp-approximate SVP_p. For p > 2, the above statement holds under the weaker assumption of randomized Gap-ETH. I.e., there is no 2o(n)-time algorithm for γp-approximate SVP_p unless randomized Gap-ETH is false. See http://arxiv.org/abs/1712.00942 for a complete exposition.
(Gap/S) SVP的ETH硬度
我们证明了在p范数(SVP_p)中最短向量问题的定量硬度结果,其中n是输入格的秩。对于“几乎所有”p > p0≈2.1397,对于某些显式(易于计算的)常数Cp > 0, SVP_p不存在2n/Cp- Time算法,除非(随机化)强指数时间假设(SETH)为假。(例如,p≥3,Cp < 1 + (p + 3) 2−p + 10 p2 2−2 p。)对于任意1≤p≤∞,除非非均匀间隙-指数时间假设(Gap-ETH)为假,否则SVP_p不存在20 (n)时间算法。此外,对于每一个这样的p,都存在一个常数γp > 1,使得同样的结果对γp近似的SVP_p也成立。对于p > 2,在随机化Gap-ETH的弱假设下,上述表述成立。即,除非随机化Gap-ETH为假,否则不存在20 (n)时间的γ - p近似SVP_p算法。参见http://arxiv.org/abs/1712.00942获得完整的说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信