SSDA-YOLO: Semi-supervised Domain Adaptive YOLO for Cross-Domain Object Detection

Huayi Zhou, Fei Jiang, Hongtao Lu
{"title":"SSDA-YOLO: Semi-supervised Domain Adaptive YOLO for Cross-Domain Object Detection","authors":"Huayi Zhou, Fei Jiang, Hongtao Lu","doi":"10.48550/arXiv.2211.02213","DOIUrl":null,"url":null,"abstract":"Domain adaptive object detection (DAOD) aims to alleviate transfer performance degradation caused by the cross-domain discrepancy. However, most existing DAOD methods are dominated by outdated and computationally intensive two-stage Faster R-CNN, which is not the first choice for industrial applications. In this paper, we propose a novel semi-supervised domain adaptive YOLO (SSDA-YOLO) based method to improve cross-domain detection performance by integrating the compact one-stage stronger detector YOLOv5 with domain adaptation. Specifically, we adapt the knowledge distillation framework with the Mean Teacher model to assist the student model in obtaining instance-level features of the unlabeled target domain. We also utilize the scene style transfer to cross-generate pseudo images in different domains for remedying image-level differences. In addition, an intuitive consistency loss is proposed to further align cross-domain predictions. We evaluate SSDA-YOLO on public benchmarks including PascalVOC, Clipart1k, Cityscapes, and Foggy Cityscapes. Moreover, to verify its generalization, we conduct experiments on yawning detection datasets collected from various real classrooms. The results show considerable improvements of our method in these DAOD tasks, which reveals both the effectiveness of proposed adaptive modules and the urgency of applying more advanced detectors in DAOD. Our code is available on \\url{https://github.com/hnuzhy/SSDA-YOLO}.","PeriodicalId":10549,"journal":{"name":"Comput. Vis. Image Underst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Vis. Image Underst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.02213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Domain adaptive object detection (DAOD) aims to alleviate transfer performance degradation caused by the cross-domain discrepancy. However, most existing DAOD methods are dominated by outdated and computationally intensive two-stage Faster R-CNN, which is not the first choice for industrial applications. In this paper, we propose a novel semi-supervised domain adaptive YOLO (SSDA-YOLO) based method to improve cross-domain detection performance by integrating the compact one-stage stronger detector YOLOv5 with domain adaptation. Specifically, we adapt the knowledge distillation framework with the Mean Teacher model to assist the student model in obtaining instance-level features of the unlabeled target domain. We also utilize the scene style transfer to cross-generate pseudo images in different domains for remedying image-level differences. In addition, an intuitive consistency loss is proposed to further align cross-domain predictions. We evaluate SSDA-YOLO on public benchmarks including PascalVOC, Clipart1k, Cityscapes, and Foggy Cityscapes. Moreover, to verify its generalization, we conduct experiments on yawning detection datasets collected from various real classrooms. The results show considerable improvements of our method in these DAOD tasks, which reveals both the effectiveness of proposed adaptive modules and the urgency of applying more advanced detectors in DAOD. Our code is available on \url{https://github.com/hnuzhy/SSDA-YOLO}.
SSDA-YOLO:半监督域自适应YOLO跨域目标检测
域自适应目标检测(Domain adaptive object detection, DAOD)旨在缓解由于跨域差异而导致的传输性能下降。然而,大多数现有的DAOD方法以过时且计算密集型的两级Faster R-CNN为主,这不是工业应用的首选。本文提出了一种新的基于半监督域自适应YOLO (SSDA-YOLO)的方法,通过将紧凑的一级强检测器YOLOv5与域自适应相结合来提高跨域检测性能。具体而言,我们将知识蒸馏框架与平均教师模型相结合,以帮助学生模型获得未标记目标域的实例级特征。我们还利用场景风格转移来交叉生成不同域的伪图像,以弥补图像级别的差异。此外,提出了一种直观的一致性损失来进一步对齐跨域预测。我们在公共基准上评估SSDA-YOLO,包括PascalVOC, Clipart1k, cityscape和大雾城市景观。此外,为了验证其泛化性,我们对来自各个真实教室的打哈欠检测数据集进行了实验。结果表明我们的方法在这些DAOD任务中有很大的改进,这表明了所提出的自适应模块的有效性以及在DAOD中应用更先进检测器的紧迫性。我们的代码可以在\url{https://github.com/hnuzhy/SSDA-YOLO}上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信