A New Approach to Searching Lyapunov Function Candidates for Autonomous Nonlinear Systems

F. Hamidi, Samia Charfeddine, M. Abdelkrim
{"title":"A New Approach to Searching Lyapunov Function Candidates for Autonomous Nonlinear Systems","authors":"F. Hamidi, Samia Charfeddine, M. Abdelkrim","doi":"10.5013/ijssst.a.12.06.07","DOIUrl":null,"url":null,"abstract":"Stability of nonlinear systems is a problem of fundamental importance in system engineering. Specifically, the computation of a Lyapunov Function presents one of the tools enabling the study of the stability of nonlinear systems. The aim of this work is to study the Lyapunov approaches for polynomial systems. These approaches have been investigated in order to develop numerical algorithms based on the synthesis of Polynomial Lyapunov Functions. We proceed in two steps: Firstly, we implement a Threshold Accepting Algorithm technique to determine a candidate Lyapunov function. Secondly, we use an optimization strategy based on a Linear Matrix Inequality (LMI) to compute the Region of Attraction (RA). The parameters of the Lyapunov Function are computed by combining Threshold Accepting Algorithms (TAA) and LMI. The proposed approach yields a larger stability region for polynomial systems than an existing method does. Examples are given to illustrate the efficiency of the proposed approach.","PeriodicalId":14286,"journal":{"name":"International journal of simulation: systems, science & technology","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of simulation: systems, science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5013/ijssst.a.12.06.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stability of nonlinear systems is a problem of fundamental importance in system engineering. Specifically, the computation of a Lyapunov Function presents one of the tools enabling the study of the stability of nonlinear systems. The aim of this work is to study the Lyapunov approaches for polynomial systems. These approaches have been investigated in order to develop numerical algorithms based on the synthesis of Polynomial Lyapunov Functions. We proceed in two steps: Firstly, we implement a Threshold Accepting Algorithm technique to determine a candidate Lyapunov function. Secondly, we use an optimization strategy based on a Linear Matrix Inequality (LMI) to compute the Region of Attraction (RA). The parameters of the Lyapunov Function are computed by combining Threshold Accepting Algorithms (TAA) and LMI. The proposed approach yields a larger stability region for polynomial systems than an existing method does. Examples are given to illustrate the efficiency of the proposed approach.
自主非线性系统Lyapunov函数候选项搜索的新方法
非线性系统的稳定性是系统工程中一个非常重要的问题。具体地说,李雅普诺夫函数的计算是研究非线性系统稳定性的工具之一。这项工作的目的是研究多项式系统的李雅普诺夫方法。为了开发基于多项式李雅普诺夫函数合成的数值算法,对这些方法进行了研究。我们分两步进行:首先,我们实现阈值接受算法技术来确定候选Lyapunov函数。其次,我们使用基于线性矩阵不等式(LMI)的优化策略来计算吸引区域(RA)。采用阈值接受算法(TAA)和LMI相结合的方法计算了Lyapunov函数的参数。与现有方法相比,所提出的方法对多项式系统具有更大的稳定区域。算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信