Optimal designs for an interference model

J. Kunert, S. Mersmann
{"title":"Optimal designs for an interference model","authors":"J. Kunert, S. Mersmann","doi":"10.17877/DE290R-504","DOIUrl":null,"url":null,"abstract":"Kunert and Martin (2000) determined optimal and efficient block designs in a model for field trials with interference effects, for block sizes up to 4. In this paper we use Kushner's method (Kushner, 1997) of finding optimal approximate designs to extend the work of Kunert and Martin (2000) to optimal designs with five or more plots per block. We give an overall upper bound a*t,b,k for the trace of the information matrix of any design and show that an universally optimal approximate design will have all its sequences from merely four different equivalence classes. We further determine the efficiency of a binary type I orthogonal array under the general p-criterion. We find that these designs achieve high efficiencies of more than 0:94.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2009-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17877/DE290R-504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Kunert and Martin (2000) determined optimal and efficient block designs in a model for field trials with interference effects, for block sizes up to 4. In this paper we use Kushner's method (Kushner, 1997) of finding optimal approximate designs to extend the work of Kunert and Martin (2000) to optimal designs with five or more plots per block. We give an overall upper bound a*t,b,k for the trace of the information matrix of any design and show that an universally optimal approximate design will have all its sequences from merely four different equivalence classes. We further determine the efficiency of a binary type I orthogonal array under the general p-criterion. We find that these designs achieve high efficiencies of more than 0:94.
干涉模型的优化设计
Kunert和Martin(2000)在具有干扰效应的现场试验模型中确定了最优和有效的块设计,块大小为4。在本文中,我们使用Kushner的方法(Kushner, 1997)寻找最优近似设计,将Kunert和Martin(2000)的工作扩展到每个块具有五个或更多地块的最优设计。我们给出了任何设计的信息矩阵迹的总体上界a*t,b,k,并证明了一个普遍最优的近似设计的所有序列只来自四个不同的等价类。在一般p准则下,进一步确定了二元I型正交阵列的效率。我们发现这些设计实现了超过0:94的高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信