Disproving Hooley’s conjecture

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D. Fiorilli, G. Martin
{"title":"Disproving Hooley’s conjecture","authors":"D. Fiorilli, G. Martin","doi":"10.4171/jems/1291","DOIUrl":null,"url":null,"abstract":". Define G ( x ; q ) to be the variance of primes p ≤ x in the arithmetic progressions modulo q , weighted by log p . In analogy with his q -analogue of Selberg’s upper bound on the variance of primes in intervals, Hooley conjectured that as soon as q tends to infinity and x ≥ q , we have the upper bound G ( x ; q ) (cid:28) x log q . This conjecture was proven true over function fields by Keating and Rudnick, using equidistribution results of Katz. In this paper we show that the upper bound does not hold in general, and that G ( x ; q ) can be much larger than x log q for values of q which are (cid:16) log log x . This implies that a conjecture of the first author on the range of validity of Hooley’s conjecture is essentially best possible.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jems/1291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

. Define G ( x ; q ) to be the variance of primes p ≤ x in the arithmetic progressions modulo q , weighted by log p . In analogy with his q -analogue of Selberg’s upper bound on the variance of primes in intervals, Hooley conjectured that as soon as q tends to infinity and x ≥ q , we have the upper bound G ( x ; q ) (cid:28) x log q . This conjecture was proven true over function fields by Keating and Rudnick, using equidistribution results of Katz. In this paper we show that the upper bound does not hold in general, and that G ( x ; q ) can be much larger than x log q for values of q which are (cid:16) log log x . This implies that a conjecture of the first author on the range of validity of Hooley’s conjecture is essentially best possible.
反驳胡利的猜想
. 定义G (x;Q)为等差数列中p≤x的素数的方差以Q为模,以log p加权。与Selberg关于区间内质数方差的上界的q类比,Hooley推测,只要q趋于无穷且x≥q,我们就有上界G (x;Q) (cid:28) x log Q。这个猜想由Keating和Rudnick利用Katz的等分布结果在函数场上证明为真。在本文中,我们证明了上界在一般情况下不成立,并且G (x;Q)可以比x log Q大很多当Q的值为(cid:16) logx时。这意味着第一作者对胡利猜想的有效性范围的猜想本质上是最好的可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信