Symmetry breaking in the drain current of multi-finger transistors

N. Lu, Sungjae Lee, R. Wachnik
{"title":"Symmetry breaking in the drain current of multi-finger transistors","authors":"N. Lu, Sungjae Lee, R. Wachnik","doi":"10.1109/CICC.2015.7338408","DOIUrl":null,"url":null,"abstract":"The drain current of a multi-finger MOSFET is typically calculated as the product of that of a single-finger MOSFET and the number of fingers. Careful investigation of currents in different fingers of a multi-finger transistor in the presence of parasitic effects shows differences between the per-finger drain current of the multi-finger transistor and the drain current of a corresponding single-finger transistor. We show that each of the following factors alone causes the drain current in one or more fingers of a multi-finger transistor to be different from that in other fingers of the transistor and the per-finger drain current of the multi-finger transistor to be different from the drain current of a corresponding single-finger transistor: (a) the resistance of wires that connect multiple fingers together, (b) the contact resistance, (c) the diffusion resistance, and (d) self heating. Excluding all of the above factors, the uncorrelated variations among the sub-threshold drain currents of different finger cause the per-finger median sub-threshold drain current of the multi-finger transistor to be different from the median sub-threshold drain current of the single-finger transistor.","PeriodicalId":6665,"journal":{"name":"2015 IEEE Custom Integrated Circuits Conference (CICC)","volume":"43 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2015.7338408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The drain current of a multi-finger MOSFET is typically calculated as the product of that of a single-finger MOSFET and the number of fingers. Careful investigation of currents in different fingers of a multi-finger transistor in the presence of parasitic effects shows differences between the per-finger drain current of the multi-finger transistor and the drain current of a corresponding single-finger transistor. We show that each of the following factors alone causes the drain current in one or more fingers of a multi-finger transistor to be different from that in other fingers of the transistor and the per-finger drain current of the multi-finger transistor to be different from the drain current of a corresponding single-finger transistor: (a) the resistance of wires that connect multiple fingers together, (b) the contact resistance, (c) the diffusion resistance, and (d) self heating. Excluding all of the above factors, the uncorrelated variations among the sub-threshold drain currents of different finger cause the per-finger median sub-threshold drain current of the multi-finger transistor to be different from the median sub-threshold drain current of the single-finger transistor.
多指晶体管漏极电流的对称性破缺
多指MOSFET的漏极电流通常计算为单指MOSFET的漏极电流与指数的乘积。对存在寄生效应的多指晶体管不同手指的电流进行仔细研究,发现多指晶体管的每指漏极电流与相应的单指晶体管的漏极电流之间存在差异。我们表明,以下每一个因素单独导致多指晶体管的一个或多个手指的漏极电流与晶体管的其他手指的漏极电流不同,多指晶体管的每个手指的漏极电流与相应的单指晶体管的漏极电流不同:(a)将多个手指连接在一起的导线的电阻,(b)接触电阻,(c)扩散电阻,(d)自加热。排除上述所有因素,不同手指的亚阈值漏极电流之间的不相关变化导致多指晶体管的每指亚阈值漏极电流中位数与单指晶体管的亚阈值漏极电流中位数不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信