{"title":"SINGULARITIES OF DIVERGENCE-FREE VECTOR FIELDS WITH VALUES INTO S1 OR S2: APPLICATIONS TO MICROMAGNETICS","authors":"R. Ignat","doi":"10.1142/S1793744212300012","DOIUrl":null,"url":null,"abstract":"In this survey, we present several results on the regularizing effect, rigidity and approximation of 2D unit-length divergence-free vector fields. We develop the concept of entropy (coming from scalar conservation laws) in order to analyze singularities of such vector fields. In particular, based on entropies, we characterize lower semicontinuous line-energies in 2D and we study by Γ-convergence method the associated regularizing models (like the 2D Aviles–Giga and the 3D Bloch wall models). We also present some applications to the analysis of pattern formation in micromagnetics. In particular, we describe domain walls in the thin ferromagnetic films (e.g. symmetric Neel walls, asymmetric Neel walls, asymmetric Bloch walls) together with interior and boundary vortices.","PeriodicalId":52130,"journal":{"name":"Confluentes Mathematici","volume":"11 1","pages":"1230001"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Confluentes Mathematici","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793744212300012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 14
Abstract
In this survey, we present several results on the regularizing effect, rigidity and approximation of 2D unit-length divergence-free vector fields. We develop the concept of entropy (coming from scalar conservation laws) in order to analyze singularities of such vector fields. In particular, based on entropies, we characterize lower semicontinuous line-energies in 2D and we study by Γ-convergence method the associated regularizing models (like the 2D Aviles–Giga and the 3D Bloch wall models). We also present some applications to the analysis of pattern formation in micromagnetics. In particular, we describe domain walls in the thin ferromagnetic films (e.g. symmetric Neel walls, asymmetric Neel walls, asymmetric Bloch walls) together with interior and boundary vortices.
期刊介绍:
Confluentes Mathematici is a mathematical research journal. Since its creation in 2009 by the Institut Camille Jordan UMR 5208 and the Unité de Mathématiques Pures et Appliquées UMR 5669 of the Université de Lyon, it reflects the wish of the mathematical community of Lyon—Saint-Étienne to participate in the new forms of scientific edittion. The journal is electronic only, fully open acces and without author charges. The journal aims to publish high quality mathematical research articles in English, French or German. All domains of Mathematics (pure and applied) and Mathematical Physics will be considered, as well as the History of Mathematics. Confluentes Mathematici also publishes survey articles. Authors are asked to pay particular attention to the expository style of their article, in order to be understood by all the communities concerned.