Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, M. Hill, M. Swift
{"title":"Efficient virtual memory for big memory servers","authors":"Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, M. Hill, M. Swift","doi":"10.1145/2485922.2485943","DOIUrl":null,"url":null,"abstract":"Our analysis shows that many \"big-memory\" server workloads, such as databases, in-memory caches, and graph analytics, pay a high cost for page-based virtual memory. They consume as much as 10% of execution cycles on TLB misses, even using large pages. On the other hand, we find that these workloads use read-write permission on most pages, are provisioned not to swap, and rarely benefit from the full flexibility of page-based virtual memory. To remove the TLB miss overhead for big-memory workloads, we propose mapping part of a process's linear virtual address space with a direct segment, while page mapping the rest of the virtual address space. Direct segments use minimal hardware---base, limit and offset registers per core---to map contiguous virtual memory regions directly to contiguous physical memory. They eliminate the possibility of TLB misses for key data structures such as database buffer pools and in-memory key-value stores. Memory mapped by a direct segment may be converted back to paging when needed. We prototype direct-segment software support for x86-64 in Linux and emulate direct-segment hardware. For our workloads, direct segments eliminate almost all TLB misses and reduce the execution time wasted on TLB misses to less than 0.5%.","PeriodicalId":20555,"journal":{"name":"Proceedings of the 40th Annual International Symposium on Computer Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"319","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2485922.2485943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 319
Abstract
Our analysis shows that many "big-memory" server workloads, such as databases, in-memory caches, and graph analytics, pay a high cost for page-based virtual memory. They consume as much as 10% of execution cycles on TLB misses, even using large pages. On the other hand, we find that these workloads use read-write permission on most pages, are provisioned not to swap, and rarely benefit from the full flexibility of page-based virtual memory. To remove the TLB miss overhead for big-memory workloads, we propose mapping part of a process's linear virtual address space with a direct segment, while page mapping the rest of the virtual address space. Direct segments use minimal hardware---base, limit and offset registers per core---to map contiguous virtual memory regions directly to contiguous physical memory. They eliminate the possibility of TLB misses for key data structures such as database buffer pools and in-memory key-value stores. Memory mapped by a direct segment may be converted back to paging when needed. We prototype direct-segment software support for x86-64 in Linux and emulate direct-segment hardware. For our workloads, direct segments eliminate almost all TLB misses and reduce the execution time wasted on TLB misses to less than 0.5%.