On the escape rate of geodesic loops in an open manifold with nonnegative Ricci curvature

Jiayin Pan
{"title":"On the escape rate of geodesic loops in an open manifold with nonnegative Ricci curvature","authors":"Jiayin Pan","doi":"10.2140/GT.2021.25.1059","DOIUrl":null,"url":null,"abstract":"A consequence of the Cheeger-Gromoll splitting theorem states that for any open manifold $(M,x)$ of nonnegative Ricci curvature, if all the minimal geodesic loops at $x$ that represent elements of $\\pi_1(M,x)$ are contained in a bounded ball, then $\\pi_1(M,x)$ is virtually abelian. We generalize the above result: if these minimal representing geodesic loops of $\\pi_1(M,x)$ escape from any bounded metric balls at a sublinear rate with respect to their lengths, then $\\pi_1(M,x)$ is virtually abelian.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2021.25.1059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A consequence of the Cheeger-Gromoll splitting theorem states that for any open manifold $(M,x)$ of nonnegative Ricci curvature, if all the minimal geodesic loops at $x$ that represent elements of $\pi_1(M,x)$ are contained in a bounded ball, then $\pi_1(M,x)$ is virtually abelian. We generalize the above result: if these minimal representing geodesic loops of $\pi_1(M,x)$ escape from any bounded metric balls at a sublinear rate with respect to their lengths, then $\pi_1(M,x)$ is virtually abelian.
非负Ricci曲率开放流形中测地线回路的逃逸率
Cheeger-Gromoll分裂定理的一个结果表明,对于任意具有非负Ricci曲率的开流形$(M,x)$,如果$x$上所有表示$\pi_1(M,x)$的元素的最小测地环都包含在一个有界球中,则$\pi_1(M,x)$实际上是阿贝尔的。我们推广上述结果:如果这些最小表示的测地线环$\pi_1(M,x)$以相对于其长度的次线性速率从任何有界度量球中逃逸,则$\pi_1(M,x)$实际上是阿贝的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信