{"title":"Augmenting Graphs to Minimize the Radius","authors":"Joachim Gudmundsson, Y. Sha, Fan Yao","doi":"10.4230/LIPIcs.ISAAC.2021.45","DOIUrl":null,"url":null,"abstract":"We study the problem of augmenting a metric graph by adding k edges while minimizing the radius of the augmented graph. We give a simple 3-approximation algorithm and show that there is no polynomial-time (5 / 3 − ϵ )-approximation algorithm, for any ϵ > 0, unless P = NP . We also give two exact algorithms for the special case when the input graph is a tree, one of which is generalized to handle metric graphs with bounded treewidth.","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"85 1","pages":"101996"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ISAAC.2021.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We study the problem of augmenting a metric graph by adding k edges while minimizing the radius of the augmented graph. We give a simple 3-approximation algorithm and show that there is no polynomial-time (5 / 3 − ϵ )-approximation algorithm, for any ϵ > 0, unless P = NP . We also give two exact algorithms for the special case when the input graph is a tree, one of which is generalized to handle metric graphs with bounded treewidth.