{"title":"Secular dynamics in extrasolar systems with two planets in mutually inclined orbits","authors":"Rita Mastroianni, C. Efthymiopoulos","doi":"10.1017/S1743921321001368","DOIUrl":null,"url":null,"abstract":"Abstract We revisit the problem of the secular dynamics in two-planet systems in which the planetary orbits exhibit a high value of the mutual inclination. We propose a ‘basic hamiltonian model’ for secular dynamics, parameterized in terms of the system’s Angular Momentum Deficit (AMD). The secular Hamiltonian can be obtained in closed form, using multipole expansions in powers of the distance ratio between the planets, or in the usual Laplace-Lagrange form. The main features of the phase space (number and stability of periodic orbits, bifurcations from the main apsidal corotation resonances, Kozai resonance etc.) can all be recovered by choosing the corresponding terms in the ‘basic Hamiltonian’. Applications include the semi-analytical determination of the actual orbital state of the system using Hamiltonian normalization techniques. An example is discussed referring to the system of two outermost planets of the ν-Andromedae system.","PeriodicalId":20590,"journal":{"name":"Proceedings of the International Astronomical Union","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Astronomical Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1743921321001368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We revisit the problem of the secular dynamics in two-planet systems in which the planetary orbits exhibit a high value of the mutual inclination. We propose a ‘basic hamiltonian model’ for secular dynamics, parameterized in terms of the system’s Angular Momentum Deficit (AMD). The secular Hamiltonian can be obtained in closed form, using multipole expansions in powers of the distance ratio between the planets, or in the usual Laplace-Lagrange form. The main features of the phase space (number and stability of periodic orbits, bifurcations from the main apsidal corotation resonances, Kozai resonance etc.) can all be recovered by choosing the corresponding terms in the ‘basic Hamiltonian’. Applications include the semi-analytical determination of the actual orbital state of the system using Hamiltonian normalization techniques. An example is discussed referring to the system of two outermost planets of the ν-Andromedae system.