New Oscillation Criteria for Half-Linear Second-Order Neutral Advanced Difference Equations

Q3 Mathematics
P. Selvakumar, P. Gopalakrishnan, A. Murugesan
{"title":"New Oscillation Criteria for Half-Linear Second-Order Neutral Advanced Difference Equations","authors":"P. Selvakumar, P. Gopalakrishnan, A. Murugesan","doi":"10.37622/ijde/16.1.2021.107-122","DOIUrl":null,"url":null,"abstract":"We obtained oscillation criteria for the second-order half-linear neutral advanced difference equations of the kind ∆(α(ζ)(∆w(ζ))) + η(ζ)y(ζ + κ) = 0; ζ ≥ ζ0, where w(ζ) = y(ζ) + p(ζ)y(ζ + ξ). We provide a new oscillation condition, which significantly improves the existing ones, by providing a new axiom bound for a non-oscillatory solution. The derived oscillation constant is unimprovable in a certain nonneutral case. 2020 Mathematics Subject Classifications: 39A12, 39A13, 39A21.","PeriodicalId":36454,"journal":{"name":"International Journal of Difference Equations","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Difference Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37622/ijde/16.1.2021.107-122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We obtained oscillation criteria for the second-order half-linear neutral advanced difference equations of the kind ∆(α(ζ)(∆w(ζ))) + η(ζ)y(ζ + κ) = 0; ζ ≥ ζ0, where w(ζ) = y(ζ) + p(ζ)y(ζ + ξ). We provide a new oscillation condition, which significantly improves the existing ones, by providing a new axiom bound for a non-oscillatory solution. The derived oscillation constant is unimprovable in a certain nonneutral case. 2020 Mathematics Subject Classifications: 39A12, 39A13, 39A21.
半线性二阶中立型高级差分方程的新振动判据
得到了一类二阶半线性中立型高级差分方程(∆(α(ζ)(∆w(ζ)) + η(ζ)y(ζ + κ) = 0的振动判据;ζ≥ζ0,其中w(ζ) = y(ζ) + p(ζ)y(ζ + ξ)通过给出非振荡解的一个新的公理界,给出了一个新的振荡条件,大大改进了已有的振荡条件。导出的振荡常数在非中性情况下是不可改进的。2020数学学科分类:39A12、39A13、39A21。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Difference Equations
International Journal of Difference Equations Engineering-Computational Mechanics
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信