Counting Lattice Points in the Sphere using Deep Neural Networks

Aymen Askri, G. R. Othman, H. Ghauch
{"title":"Counting Lattice Points in the Sphere using Deep Neural Networks","authors":"Aymen Askri, G. R. Othman, H. Ghauch","doi":"10.1109/IEEECONF44664.2019.9048858","DOIUrl":null,"url":null,"abstract":"This paper presents a deep learning model for regression to predict the number of lattice points inside the n-dimensional hypersphere. The number of points depends primarily on the lattice generator matrix and the sphere radius, which are used as inputs for the proposed deep neural network (DNN). To see the accuracy of the DNN model, we use some known lattices. Obtained results are compared to mathematical existing bounds in the literature. Our numerical results reveal that our model gives an accurate prediction, of around 80% percent, on the number of lattice points in the sphere.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"48 1","pages":"2053-2057"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a deep learning model for regression to predict the number of lattice points inside the n-dimensional hypersphere. The number of points depends primarily on the lattice generator matrix and the sphere radius, which are used as inputs for the proposed deep neural network (DNN). To see the accuracy of the DNN model, we use some known lattices. Obtained results are compared to mathematical existing bounds in the literature. Our numerical results reveal that our model gives an accurate prediction, of around 80% percent, on the number of lattice points in the sphere.
使用深度神经网络计算球体中的点阵点
本文提出了一种深度学习回归模型,用于预测n维超球内格点的数量。点的数量主要取决于晶格生成器矩阵和球体半径,它们被用作所提出的深度神经网络(DNN)的输入。为了检验DNN模型的准确性,我们使用了一些已知的格。所得结果与文献中已有的数学界进行了比较。我们的数值结果表明,我们的模型给出了一个准确的预测,大约80%,在球中的点阵数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信