{"title":"Pyrolysis Simulation of Plastic Wastes in Actual Situation","authors":"Zijian Wang","doi":"10.18178/ijcea.2022.13.4.797","DOIUrl":null,"url":null,"abstract":"Nowadays, the physical and chemical qualities of the same type of plastic goods can vary significantly due to production conditions and manufacturing processes, making it difficult to categorize discarded plastic products and increasing the difficulty of recycling. In this paper, three thermoplastics: polypropylene (PP); polystyrene (PS); and high-density polyethylene (HDPE), are used to detect and analyze the pyrolysis properties of waste plastics using Thermogravimetric Analysis (TGA) and to calculate the kinetic parameters of thermoplastics in the pyrolysis reaction. It is found that the mixed pyrolysis of plastics facilitates the pyrolysis reaction, but the required activation energy of the reaction increases if the content of more stable HDPE gains. The optimum pyrolysis temperature range and activation energy of pyrolysis are discovered by modelling the real proportion of waste plastics and pyrolyzing them. And the results will predict and guide the engineering development for mass waste plastic pyrolysis.","PeriodicalId":13949,"journal":{"name":"International Journal of Chemical Engineering and Applications","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijcea.2022.13.4.797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, the physical and chemical qualities of the same type of plastic goods can vary significantly due to production conditions and manufacturing processes, making it difficult to categorize discarded plastic products and increasing the difficulty of recycling. In this paper, three thermoplastics: polypropylene (PP); polystyrene (PS); and high-density polyethylene (HDPE), are used to detect and analyze the pyrolysis properties of waste plastics using Thermogravimetric Analysis (TGA) and to calculate the kinetic parameters of thermoplastics in the pyrolysis reaction. It is found that the mixed pyrolysis of plastics facilitates the pyrolysis reaction, but the required activation energy of the reaction increases if the content of more stable HDPE gains. The optimum pyrolysis temperature range and activation energy of pyrolysis are discovered by modelling the real proportion of waste plastics and pyrolyzing them. And the results will predict and guide the engineering development for mass waste plastic pyrolysis.