Fermat benchmarks for rational expressionals in maple

M. Monagan, Roman Pearce
{"title":"Fermat benchmarks for rational expressionals in maple","authors":"M. Monagan, Roman Pearce","doi":"10.1145/3055282.3055299","DOIUrl":null,"url":null,"abstract":"We employ two techniques to dramatically improve Maple's performance on the Fermat benchmarks for simplifying rational expressions. First, we factor expanded polynomials to ensure that gcds are identified and cancelled automatically. Second, we replace all expanded polynomials by new variables and normalize the result. To undo the substitutions, we use a C routine for sparse multivariate division by a set of polynomials. The resulting times for the first Fermat benchmark are a factor of 17x faster than Fermat and 39x faster than Magma.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"44 1","pages":"188-190"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055282.3055299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We employ two techniques to dramatically improve Maple's performance on the Fermat benchmarks for simplifying rational expressions. First, we factor expanded polynomials to ensure that gcds are identified and cancelled automatically. Second, we replace all expanded polynomials by new variables and normalize the result. To undo the substitutions, we use a C routine for sparse multivariate division by a set of polynomials. The resulting times for the first Fermat benchmark are a factor of 17x faster than Fermat and 39x faster than Magma.
枫树中有理表达式的费马基准
我们采用了两种技术来显著提高Maple在费马基准上的性能,以简化有理数表达式。首先,我们对展开多项式进行因式分解,以确保自动识别和取消gcd。其次,我们用新的变量替换所有展开的多项式,并将结果归一化。为了撤销替换,我们使用C例程对一组多项式进行稀疏多元除法。第一个Fermat基准测试的结果时间比Fermat快17倍,比Magma快39倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信