Radio Remote Head Clustering with Affinity Propagation Algorithm in C-RAN

Seju Park, Han-Shin Jo, Cheol Mun, J. Yook
{"title":"Radio Remote Head Clustering with Affinity Propagation Algorithm in C-RAN","authors":"Seju Park, Han-Shin Jo, Cheol Mun, J. Yook","doi":"10.1109/VTCFall.2019.8891078","DOIUrl":null,"url":null,"abstract":"The optimal number of clusters (K) differs depending on the radio remote head (RRH) density. This paper verifies that the K values cannot be met by the conventional affinity propagation (AP) clustering algorithm. In an ultra-dense network (UDN) environment, the density of RRH is a very important factor for the bender because it is directly related to the cost of configuring the wireless communication network. Likewise, in order to provide the optimal communication environment to the user in the UDN environment, it is necessary to enable flexible clustering according to changing channel environment by utilizing semi-dynamic clustering technology. As a result, we propose an AP algorithm that finds a better K value than the conventional method. To this end, the proposed algorithm additionally utilizes a non-coordinated multi-point (CoMP) interference power that varies depending on the RRH density, user position, and the variations in propagation channel. The simulation results show that the proposed algorithm shows a better average capacity than the conventional algorithm.","PeriodicalId":6713,"journal":{"name":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","volume":"180 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2019.8891078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The optimal number of clusters (K) differs depending on the radio remote head (RRH) density. This paper verifies that the K values cannot be met by the conventional affinity propagation (AP) clustering algorithm. In an ultra-dense network (UDN) environment, the density of RRH is a very important factor for the bender because it is directly related to the cost of configuring the wireless communication network. Likewise, in order to provide the optimal communication environment to the user in the UDN environment, it is necessary to enable flexible clustering according to changing channel environment by utilizing semi-dynamic clustering technology. As a result, we propose an AP algorithm that finds a better K value than the conventional method. To this end, the proposed algorithm additionally utilizes a non-coordinated multi-point (CoMP) interference power that varies depending on the RRH density, user position, and the variations in propagation channel. The simulation results show that the proposed algorithm shows a better average capacity than the conventional algorithm.
基于亲和性传播算法的C-RAN无线远端头聚类
最佳簇数(K)取决于无线电遥控头(RRH)密度。本文验证了传统的亲和传播(AP)聚类算法不能满足K值。在超密集网络(UDN)环境中,RRH的密度对弯曲机来说是一个非常重要的因素,因为它直接关系到配置无线通信网络的成本。同样,为了在UDN环境中为用户提供最优的通信环境,需要利用半动态集群技术,根据信道环境的变化实现灵活的集群。因此,我们提出了一种比传统方法找到更好的K值的AP算法。为此,所提出的算法还利用了非协调多点(CoMP)干扰功率,该功率根据RRH密度、用户位置和传播信道的变化而变化。仿真结果表明,该算法比传统算法具有更好的平均容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信