{"title":"Bounds for the Grundy chromatic number of graphs in terms of domination number","authors":"Abbass Khaleghi, M. Zaker","doi":"10.36045/j.bbms.211019","DOIUrl":null,"url":null,"abstract":"For any graph $G$, the Grundy (or First-Fit) chromatic number of $G$, denoted by $\\Gamma(G)$ (also $\\chi_{_{\\sf FF}}(G)$), is defined as the maximum number of colors used by the First-Fit (greedy) coloring of the vertices of $G$. Determining the Grundy number is $NP$-complete, and obtaining bounds for $\\Gamma(G)$ in terms of the known graph parameters is an active research topic. By a star partition of $G$ we mean any partition of $V(G)$ into say $V_1, \\ldots, V_k$ such that each $G[V_i]$ contains a vertex adjacent to any other vertex in $V_i$. In this paper using the star partition of graphs we obtain the first upper bounds for the Grundy number in terms of the domination number. We also prove some bounds in terms of the domination number and girth of graphs.","PeriodicalId":55309,"journal":{"name":"Bulletin of the Belgian Mathematical Society-Simon Stevin","volume":"67 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Belgian Mathematical Society-Simon Stevin","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.36045/j.bbms.211019","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For any graph $G$, the Grundy (or First-Fit) chromatic number of $G$, denoted by $\Gamma(G)$ (also $\chi_{_{\sf FF}}(G)$), is defined as the maximum number of colors used by the First-Fit (greedy) coloring of the vertices of $G$. Determining the Grundy number is $NP$-complete, and obtaining bounds for $\Gamma(G)$ in terms of the known graph parameters is an active research topic. By a star partition of $G$ we mean any partition of $V(G)$ into say $V_1, \ldots, V_k$ such that each $G[V_i]$ contains a vertex adjacent to any other vertex in $V_i$. In this paper using the star partition of graphs we obtain the first upper bounds for the Grundy number in terms of the domination number. We also prove some bounds in terms of the domination number and girth of graphs.
期刊介绍:
The Bulletin of the Belgian Mathematical Society - Simon Stevin (BBMS) is a peer-reviewed journal devoted to recent developments in all areas in pure and applied mathematics. It is published as one yearly volume, containing five issues.
The main focus lies on high level original research papers. They should aim to a broader mathematical audience in the sense that a well-written introduction is attractive to mathematicians outside the circle of experts in the subject, bringing motivation, background information, history and philosophy. The content has to be substantial enough: short one-small-result papers will not be taken into account in general, unless there are some particular arguments motivating publication, like an original point of view, a new short proof of a famous result etc.
The BBMS also publishes expository papers that bring the state of the art of a current mainstream topic in mathematics. Here it is even more important that at leat a substantial part of the paper is accessible to a broader audience of mathematicians.
The BBMS publishes papers in English, Dutch, French and German. All papers should have an abstract in English.