{"title":"Critical examination of ultrasonic transducer characteristics and calibration methods","authors":"K. Ono","doi":"10.1080/09349847.2017.1375585","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study systematically determined the transmission and receiving sensitivities of over twenty transducers. Four types of sensitivities were evaluated for both transmission and receiving sensitivities. These are found to be different from each other and the reversibility or reciprocity conditions exist only in exceptional cases. Using their observed behavior as the basis, we critically examined the calibration methods developed to characterize them, including those based on laser interferometry and the acoustic reciprocity principle. Serious flaws in some of the reciprocity methods are uncovered, which can be rectified by using the Hill--Adams method. Four procedures emerged as workable calibration methods for contact ultrasonic and acoustic emission transducers. However, current experimental uncertainties limit the upper frequency to 2 MHz.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"29 1","pages":"19 - 64"},"PeriodicalIF":1.0000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2017.1375585","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 13
Abstract
ABSTRACT This study systematically determined the transmission and receiving sensitivities of over twenty transducers. Four types of sensitivities were evaluated for both transmission and receiving sensitivities. These are found to be different from each other and the reversibility or reciprocity conditions exist only in exceptional cases. Using their observed behavior as the basis, we critically examined the calibration methods developed to characterize them, including those based on laser interferometry and the acoustic reciprocity principle. Serious flaws in some of the reciprocity methods are uncovered, which can be rectified by using the Hill--Adams method. Four procedures emerged as workable calibration methods for contact ultrasonic and acoustic emission transducers. However, current experimental uncertainties limit the upper frequency to 2 MHz.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.