Optimal Gevrey regularity for certain sums of squares in two variables

A. Bove, M. Mughetti
{"title":"Optimal Gevrey regularity for certain sums of squares in two variables","authors":"A. Bove, M. Mughetti","doi":"10.2422/2036-2145.202205_011","DOIUrl":null,"url":null,"abstract":"For $ q $, $ a $ integers such that $ a \\geq 1 $, $ 1<q $, $ (x, y) \\in U $, $ U $ a neighborhood of the origin in $ \\mathbb{R}^{2} $, we consider the operator $$ D_{x}^{2} + x^{2(q-1)} D_{y}^{2} + y^{2a} D_{y}^{2} . $$ Slightly modifying the method of proof of \\cite{monom} we can see that it is Gevrey $ s_{0} $ hypoelliptic, where $ s_{0}^{-1} = 1 - a^{-1} (q - 1) q^{-1} $. Here we show that this value is optimal, i.e. that there are solutions to $ P u = f $ with $ f $ more regular than $ G^{s_{0}} $ that are not better than Gevrey $ s_{0} $. The above operator reduces to the M\\'etivier operator (\\cite{metivier81}) when $ a = 1 $, $ q = 2 $. We give a description of the characteristic manifold of the operator and of its relation with the Treves conjecture on the real analytic regularity for sums of squares.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202205_011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For $ q $, $ a $ integers such that $ a \geq 1 $, $ 1
两变量平方和的最优Gevrey正则性
对于$ q $, $ a $这样的整数,$ a \geq 1 $, $ 1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信