On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact Riemannian manifolds

IF 0.5 Q3 MATHEMATICS
A. Losev, E. Mazepa
{"title":"On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact Riemannian manifolds","authors":"A. Losev, E. Mazepa","doi":"10.15393/J3.ART.2018.5330","DOIUrl":null,"url":null,"abstract":"We study questions of existence and belonging to a given functional class of solutions of the inhomogeneous elliptic equations ∆u − c(x)u = g(x), where c(x) > 0, g(x) are Hölder fuctions on a noncompact Riemannian manifold M without boundary. In this work we develop an approach to evaluation of solutions to boundary-value problems for linear and quasilinear equations of the elliptic type on arbitrary noncompact Riemannian manifolds. Our technique is essentially based on an approach from the papers by E. A. Mazepa and S. A. Korol’kov connected with an introduction of equivalency classes of functions and representations. We investigate the relationship between the existence of solutions of this equation on M and outside some compact set B ⊂ M with the same growth \"at infinity\".","PeriodicalId":41813,"journal":{"name":"Problemy Analiza-Issues of Analysis","volume":"92 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemy Analiza-Issues of Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15393/J3.ART.2018.5330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study questions of existence and belonging to a given functional class of solutions of the inhomogeneous elliptic equations ∆u − c(x)u = g(x), where c(x) > 0, g(x) are Hölder fuctions on a noncompact Riemannian manifold M without boundary. In this work we develop an approach to evaluation of solutions to boundary-value problems for linear and quasilinear equations of the elliptic type on arbitrary noncompact Riemannian manifolds. Our technique is essentially based on an approach from the papers by E. A. Mazepa and S. A. Korol’kov connected with an introduction of equivalency classes of functions and representations. We investigate the relationship between the existence of solutions of this equation on M and outside some compact set B ⊂ M with the same growth "at infinity".
非紧黎曼流形上非齐次椭圆方程边值问题的可解性
研究了一类非齐次椭圆方程(∆u−c(x)u = g(x)解的存在性问题,其中c(x) > 0, g(x)是无界非紧黎曼流形M上的Hölder函数。本文提出了一种求任意非紧黎曼流形上椭圆型线性方程和拟线性方程边值问题解的方法。我们的技术本质上是基于E. A. Mazepa和S. A. Korol 'kov论文中的一种方法,该方法与函数和表示的等价类的介绍有关。我们研究了该方程在M上与具有相同增长“在无穷远处”的紧集B∧M外解的存在性之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信