Bayesian feature construction for the improvement of classification performance

Q4 Mathematics
M. Maragoudakis
{"title":"Bayesian feature construction for the improvement of classification performance","authors":"M. Maragoudakis","doi":"10.1504/ijdats.2020.10026826","DOIUrl":null,"url":null,"abstract":"In this paper we are going to talk about the problem of the increase in validity, concerning the process of classification, but not through approaches having to do with the improvement of the ability to construct a precise classification model using any algorithm of machine learning. On the contrary, we approach this important matter by the view of a wider encoding of the training data and more specifically under the perspective of the creation of more features so that the hidden angles of the subject areas, which model the available data, are revealed to a higher degree. We suggest the use of a novel feature construction algorithm, which is based on the ability of the Bayesian networks to re-enact the conditional independence assumptions of features, bringing forth properties concerning their interrelation that are not clear when a classifier provides the data in their initial form. The results from the increase of the features are shown through the experimental measurement in a wide domain area and after the use of a large number of classification algorithms, where the improvement of the performance of classification is evident.","PeriodicalId":38582,"journal":{"name":"International Journal of Data Analysis Techniques and Strategies","volume":"44 1","pages":"43-75"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Analysis Techniques and Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdats.2020.10026826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we are going to talk about the problem of the increase in validity, concerning the process of classification, but not through approaches having to do with the improvement of the ability to construct a precise classification model using any algorithm of machine learning. On the contrary, we approach this important matter by the view of a wider encoding of the training data and more specifically under the perspective of the creation of more features so that the hidden angles of the subject areas, which model the available data, are revealed to a higher degree. We suggest the use of a novel feature construction algorithm, which is based on the ability of the Bayesian networks to re-enact the conditional independence assumptions of features, bringing forth properties concerning their interrelation that are not clear when a classifier provides the data in their initial form. The results from the increase of the features are shown through the experimental measurement in a wide domain area and after the use of a large number of classification algorithms, where the improvement of the performance of classification is evident.
利用贝叶斯特征构建提高分类性能
在本文中,我们将讨论关于分类过程的有效性提高问题,但不是通过与使用任何机器学习算法构建精确分类模型的能力提高有关的方法。相反,我们通过对训练数据进行更广泛的编码,更具体地说,是在创建更多特征的角度下处理这个重要问题,以便在更高程度上揭示主题领域的隐藏角度,这些角度对可用数据进行建模。我们建议使用一种新的特征构建算法,该算法基于贝叶斯网络重新制定特征的条件独立性假设的能力,从而产生有关其相互关系的属性,这些属性在分类器以初始形式提供数据时并不清楚。在广泛的域范围内,通过大量分类算法的实验测量,可以看出特征增加的结果,其中分类性能的提高是明显的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Data Analysis Techniques and Strategies
International Journal of Data Analysis Techniques and Strategies Decision Sciences-Information Systems and Management
CiteScore
1.20
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信