S. Almtori, R. Jassim, Dhia Chasib Ali, Esraa Habeeb Kadhim, R. Al-Sabur
{"title":"Sustainable Manufacturing Process Applied to Produce Waste Polymer-Polymer Matrix Composites","authors":"S. Almtori, R. Jassim, Dhia Chasib Ali, Esraa Habeeb Kadhim, R. Al-Sabur","doi":"10.5755/j01.erem.79.1.32907","DOIUrl":null,"url":null,"abstract":"Getting rid of plastic and rubber waste is one of the goals of achieving a sustainable lifestyle. Out-of-service tires and fuel and water tanks manufactured from polyvinyl chloride (PVC) are the most common waste that cities suffer from. This paper aims to investigate the effect of reinforced waste polymer particles on the polyester resin matrix when producing polymer matrix composite materials from waste tires and damaged plastic water tanks with different polymeric percentages. The polymer matrix composite could be used later in different applications, such as insulators and vibration dampers. The composite materials were evaluated by measuring the Shore D hardness, tensile strength, modulus of elasticity, and coefficient of thermal conductivity. The overall results showed hopeful behavior. Mixing a specific mixture of waste PVC and tires with polyester and hardener gives a higher tensile strength, modulus of elasticity, and Shore D hardness compared to each material when used separately. The thermal conductivity values increase with the mixing conditions between the materials. The thermal conductivity values can be reduced by using higher percentages of a mixture of waste tires and polyester or PVC and polyester. A 4.5% PVC, 4.5% tire and 91% (polyester and hardener) mixture can be recommended to improve tensile strength performance. A mix of 8.3% PVC, 8.3% tire, and 83.4% (polyester and hardener) can be recommended for high hardness.","PeriodicalId":11703,"journal":{"name":"Environmental Research, Engineering and Management","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research, Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j01.erem.79.1.32907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Getting rid of plastic and rubber waste is one of the goals of achieving a sustainable lifestyle. Out-of-service tires and fuel and water tanks manufactured from polyvinyl chloride (PVC) are the most common waste that cities suffer from. This paper aims to investigate the effect of reinforced waste polymer particles on the polyester resin matrix when producing polymer matrix composite materials from waste tires and damaged plastic water tanks with different polymeric percentages. The polymer matrix composite could be used later in different applications, such as insulators and vibration dampers. The composite materials were evaluated by measuring the Shore D hardness, tensile strength, modulus of elasticity, and coefficient of thermal conductivity. The overall results showed hopeful behavior. Mixing a specific mixture of waste PVC and tires with polyester and hardener gives a higher tensile strength, modulus of elasticity, and Shore D hardness compared to each material when used separately. The thermal conductivity values increase with the mixing conditions between the materials. The thermal conductivity values can be reduced by using higher percentages of a mixture of waste tires and polyester or PVC and polyester. A 4.5% PVC, 4.5% tire and 91% (polyester and hardener) mixture can be recommended to improve tensile strength performance. A mix of 8.3% PVC, 8.3% tire, and 83.4% (polyester and hardener) can be recommended for high hardness.
期刊介绍:
First published in 1995, the journal Environmental Research, Engineering and Management (EREM) is an international multidisciplinary journal designed to serve as a roadmap for understanding complex issues and debates of sustainable development. EREM publishes peer-reviewed scientific papers which cover research in the fields of environmental science, engineering (pollution prevention, resource efficiency), management, energy (renewables), agricultural and biological sciences, and social sciences. EREM’s topics of interest include, but are not limited to, the following: environmental research, ecological monitoring, and climate change; environmental pollution – impact assessment, mitigation, and prevention; environmental engineering, sustainable production, and eco innovations; environmental management, strategy, standards, social responsibility; environmental economics, policy, and law; sustainable consumption and education.