The Effect of Membrane Topology on Separation Performance of Vacuum Membrane Distillation Module

Justin Caspar, Guanyang Xue, Robert Krysko, A. Oztekin
{"title":"The Effect of Membrane Topology on Separation Performance of Vacuum Membrane Distillation Module","authors":"Justin Caspar, Guanyang Xue, Robert Krysko, A. Oztekin","doi":"10.1115/fedsm2021-65611","DOIUrl":null,"url":null,"abstract":"\n Computational fluid dynamics simulations were conducted to evaluate the effect of a wavy channel in a two-dimensional vacuum membrane distillation module. The curvature was induced using a sinusoidal profile along the membrane and bottom wall. Contour plots and line profiles provide a detailed view of the flow structure and the effect of the proposed configuration on the flux performance. Module averaged temperatures, concentrations, and flux values were calculated for two selected Reynolds numbers. Results indicate that at low Reynolds numbers, the wiggly module performs worse than the flat sheet module. Due to the channel’s curvature changing the direction of the bulk flow and the absence of secondary flows to promote mixing, the thermal boundary layer along the membrane surface can be more intense versus a flat sheet membrane, causing more intense temperature polarization and reduced flux performance. At Reynolds number 500, there was a 5% decrease in the flux for the curved versus flat case. However, in some curved channel areas, the local performance was superior to the flat channel. Increasing the Reynolds number could aid the performance of the wiggly channel immensely.","PeriodicalId":23636,"journal":{"name":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2021-65611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computational fluid dynamics simulations were conducted to evaluate the effect of a wavy channel in a two-dimensional vacuum membrane distillation module. The curvature was induced using a sinusoidal profile along the membrane and bottom wall. Contour plots and line profiles provide a detailed view of the flow structure and the effect of the proposed configuration on the flux performance. Module averaged temperatures, concentrations, and flux values were calculated for two selected Reynolds numbers. Results indicate that at low Reynolds numbers, the wiggly module performs worse than the flat sheet module. Due to the channel’s curvature changing the direction of the bulk flow and the absence of secondary flows to promote mixing, the thermal boundary layer along the membrane surface can be more intense versus a flat sheet membrane, causing more intense temperature polarization and reduced flux performance. At Reynolds number 500, there was a 5% decrease in the flux for the curved versus flat case. However, in some curved channel areas, the local performance was superior to the flat channel. Increasing the Reynolds number could aid the performance of the wiggly channel immensely.
膜拓扑结构对真空膜蒸馏组件分离性能的影响
通过计算流体力学模拟,对二维真空膜蒸馏模块中波浪通道的影响进行了评价。曲率是用沿膜和底壁的正弦曲线引起的。等高线图和轮廓线提供了流动结构的详细视图以及所建议的配置对通量性能的影响。模块平均温度,浓度和通量值计算为两个选定的雷诺数。结果表明,在低雷诺数下,弯曲模比平板模性能差。由于通道的曲率改变了体流的方向,并且没有二次流促进混合,沿着膜表面的热边界层比平板膜更强烈,导致更强烈的温度极化,降低了通量性能。在雷诺数为500时,弯曲情况下的通量与平坦情况相比减少了5%。然而,在一些弯曲的通道区域,局部性能优于平坦的通道。增加雷诺数可以极大地改善弯曲通道的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信