Positive loops of loose Legendrian embeddings and applications

Pub Date : 2020-01-01 DOI:10.4310/JSG.2020.V18.N3.A9
Guogang Liu
{"title":"Positive loops of loose Legendrian embeddings and applications","authors":"Guogang Liu","doi":"10.4310/JSG.2020.V18.N3.A9","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that there exist contractible positive loops of Legendrian embeddings based at any loose Legendrian submanifold. As an application, we define a partial order on Cont0(M, ξ), called strong orderability, and prove that overtwisted contact manifolds are not strongly orderable.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.V18.N3.A9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, we prove that there exist contractible positive loops of Legendrian embeddings based at any loose Legendrian submanifold. As an application, we define a partial order on Cont0(M, ξ), called strong orderability, and prove that overtwisted contact manifolds are not strongly orderable.
分享
查看原文
松散Legendrian嵌入的正回路及其应用
本文证明了基于任意松散勒让子流形的勒让嵌入的可收缩正环的存在性。作为应用,我们在Cont0(M, ξ)上定义了一个偏序,称为强有序性,并证明了过扭接触流形不是强有序的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信