A Machine Learning Framework to Identify Detailed Routing Short Violations from a Placed Netlist

Aysa Fakheri Tabrizi, L. Rakai, Nima Karimpour Darav, Ismail Bustany, L. Behjat, Shuchang Xu, A. Kennings
{"title":"A Machine Learning Framework to Identify Detailed Routing Short Violations from a Placed Netlist","authors":"Aysa Fakheri Tabrizi, L. Rakai, Nima Karimpour Darav, Ismail Bustany, L. Behjat, Shuchang Xu, A. Kennings","doi":"10.1145/3195970.3195975","DOIUrl":null,"url":null,"abstract":"Detecting and preventing routing violations has become a critical issue in physical design, especially in the early stages. Lack of correlation between global and detailed routing congestion estimations and the long runtime required to frequently consult a global router adds to the problem. In this paper, we propose a machine learning framework to predict detailed routing short violations from a placed netlist. Factors contributing to routing violations are determined and a supervised neural network model is implemented to detect these violations. Experimental results show that the proposed method is able to predict on average 90% of the shorts with only 7% false alarms and considerably reduced computational time.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"53 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3195975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

Detecting and preventing routing violations has become a critical issue in physical design, especially in the early stages. Lack of correlation between global and detailed routing congestion estimations and the long runtime required to frequently consult a global router adds to the problem. In this paper, we propose a machine learning framework to predict detailed routing short violations from a placed netlist. Factors contributing to routing violations are determined and a supervised neural network model is implemented to detect these violations. Experimental results show that the proposed method is able to predict on average 90% of the shorts with only 7% false alarms and considerably reduced computational time.
从放置的网表中识别详细路由短违规的机器学习框架
检测和防止路由违规已经成为物理设计中的一个关键问题,特别是在早期阶段。缺乏全局和详细路由拥塞估计之间的相关性以及频繁咨询全局路由器所需的长时间运行会增加问题。在本文中,我们提出了一个机器学习框架来预测来自放置的网络列表的详细路由短违规。确定了导致路由违规的因素,并实现了监督神经网络模型来检测这些违规。实验结果表明,该方法能够平均预测90%的短线,只有7%的虚警,大大减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信