Federated Learning with Autotuned Communication-Efficient Secure Aggregation

Keith Bonawitz, Fariborz Salehi, Jakub Konecný, H. B. McMahan, M. Gruteser
{"title":"Federated Learning with Autotuned Communication-Efficient Secure Aggregation","authors":"Keith Bonawitz, Fariborz Salehi, Jakub Konecný, H. B. McMahan, M. Gruteser","doi":"10.1109/IEEECONF44664.2019.9049066","DOIUrl":null,"url":null,"abstract":"Federated Learning enables mobile devices to collaboratively learn a shared inference model while keeping all the training data on a user’s device, decoupling the ability to do machine learning from the need to store the data in the cloud. Existing work on federated learning with limited communication demonstrates how random rotation can enable users’ model updates to be quantized much more efficiently, reducing the communication cost between users and the server. Meanwhile, secure aggregation enables the server to learn an aggregate of at least a threshold number of device’s model contributions without observing any individual device’s contribution in unaggregated form. In this paper, we highlight some of the challenges of setting the parameters for secure aggregation to achieve communication efficiency, especially in the context of the aggressively quantized inputs enabled by random rotation. We then develop a recipe for auto-tuning communication-efficient secure aggregation, based on specific properties of random rotation and secure aggregation – namely, the predictable distribution of vector entries post-rotation and the modular wrapping inherent in secure aggregation. We present both theoretical results and initial experiments.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"1 1","pages":"1222-1226"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9049066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

Abstract

Federated Learning enables mobile devices to collaboratively learn a shared inference model while keeping all the training data on a user’s device, decoupling the ability to do machine learning from the need to store the data in the cloud. Existing work on federated learning with limited communication demonstrates how random rotation can enable users’ model updates to be quantized much more efficiently, reducing the communication cost between users and the server. Meanwhile, secure aggregation enables the server to learn an aggregate of at least a threshold number of device’s model contributions without observing any individual device’s contribution in unaggregated form. In this paper, we highlight some of the challenges of setting the parameters for secure aggregation to achieve communication efficiency, especially in the context of the aggressively quantized inputs enabled by random rotation. We then develop a recipe for auto-tuning communication-efficient secure aggregation, based on specific properties of random rotation and secure aggregation – namely, the predictable distribution of vector entries post-rotation and the modular wrapping inherent in secure aggregation. We present both theoretical results and initial experiments.
具有自调优通信高效安全聚合的联邦学习
联邦学习使移动设备能够协作学习共享的推理模型,同时将所有训练数据保留在用户的设备上,从而将进行机器学习的能力与将数据存储在云中的需求解耦。关于有限通信的联邦学习的现有工作表明,随机旋转如何使用户的模型更新能够更有效地量化,从而降低用户和服务器之间的通信成本。同时,安全聚合使服务器能够学习至少阈值数量的设备模型贡献的聚合,而无需以非聚合形式观察任何单个设备的贡献。在本文中,我们强调了设置安全聚合参数以实现通信效率的一些挑战,特别是在随机旋转启用的积极量化输入的背景下。然后,我们基于随机旋转和安全聚合的特定属性,即旋转后向量项的可预测分布和安全聚合中固有的模块化包装,开发了一种自动调优通信高效安全聚合的配方。我们提出了理论结果和初步实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信