{"title":"Spherical Fractal Convolutional Neural Networks for Point Cloud Recognition","authors":"Yongming Rao, Jiwen Lu, Jie Zhou","doi":"10.1109/CVPR.2019.00054","DOIUrl":null,"url":null,"abstract":"We present a generic, flexible and 3D rotation invariant framework based on spherical symmetry for point cloud recognition. By introducing regular icosahedral lattice and its fractals to approximate and discretize sphere, convolution can be easily implemented to process 3D points. Based on the fractal structure, a hierarchical feature learning framework together with an adaptive sphere projection module is proposed to learn deep feature in an end-to-end manner. Our framework not only inherits the strong representation power and generalization capability from convolutional neural networks for image recognition, but also extends CNN to learn robust feature resistant to rotations and perturbations. The proposed model is effective yet robust. Comprehensive experimental study demonstrates that our approach can achieve competitive performance compared to state-of-the-art techniques on both 3D object classification and part segmentation tasks, meanwhile, outperform other rotation invariant models on rotated 3D object classification and retrieval tasks by a large margin.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"65 1","pages":"452-460"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"122","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 122
Abstract
We present a generic, flexible and 3D rotation invariant framework based on spherical symmetry for point cloud recognition. By introducing regular icosahedral lattice and its fractals to approximate and discretize sphere, convolution can be easily implemented to process 3D points. Based on the fractal structure, a hierarchical feature learning framework together with an adaptive sphere projection module is proposed to learn deep feature in an end-to-end manner. Our framework not only inherits the strong representation power and generalization capability from convolutional neural networks for image recognition, but also extends CNN to learn robust feature resistant to rotations and perturbations. The proposed model is effective yet robust. Comprehensive experimental study demonstrates that our approach can achieve competitive performance compared to state-of-the-art techniques on both 3D object classification and part segmentation tasks, meanwhile, outperform other rotation invariant models on rotated 3D object classification and retrieval tasks by a large margin.