José Neuman de Souza, L. D. A. Monteiro, V. C. D. Santos, M. Silva, Isabela O. Lima, W. M. Silveira
{"title":"Efficiency of anti-vibration gloves in soil preparation using a micro tractor","authors":"José Neuman de Souza, L. D. A. Monteiro, V. C. D. Santos, M. Silva, Isabela O. Lima, W. M. Silveira","doi":"10.1590/1807-1929/agriambi.v24n6p422-427","DOIUrl":null,"url":null,"abstract":"ABSTRACT During the working day, agricultural machinery operators are often exposed to physical risks, such as vibration, which can compromise their health and performance. Micro tractors emit high levels of vibration, which mainly affect their hands and arms. Thus, this study aims at evaluating the efficiency of different glove models in reducing vibration transmitted by the micro tractor/rotary tiller assembly according to the operating velocity and the rotation of the rotary tiller rotor. A completely randomized block design was used in a 4 x 2 x 2 factorial arrangement with five replicates. The study analyzed three glove models (G1 and G2 anti-vibration models, and anti-impact model G3) and a control treatment under the same operating conditions, but without the use of protective equipment. The study was conducted at two operating velocities (V1 = 0.98 km h-1 and V2 = 1.6 km h-1) and two rotations of the rotary tiller rotor (R1 = 265 rpm and R2 = 520 rpm). None of the evaluated glove models reached the attenuation capacity required by the Occupational Hygiene Standard (Norma de Higiene Ocupacional - NHO 10) and, under some operating conditions, they raised the incident vibration levels, exceeding the values obtained when the work was performed without a protective equipment. Although the anti-impact model G3 and the anti-vibration model G2 did not reduce the transmitted vibration to the levels considered acceptable by NHO 10, the anti-impact G3 and anti-vibration G2 models showed better performance in the work performed at a velocity of 0.98 km h-1 and a rotation of 520 rpm of the rotary tiller rotor.","PeriodicalId":51288,"journal":{"name":"Revista Brasileira de Engenharia Agricola e Ambiental","volume":"62 1","pages":"422-427"},"PeriodicalIF":1.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Engenharia Agricola e Ambiental","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1807-1929/agriambi.v24n6p422-427","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT During the working day, agricultural machinery operators are often exposed to physical risks, such as vibration, which can compromise their health and performance. Micro tractors emit high levels of vibration, which mainly affect their hands and arms. Thus, this study aims at evaluating the efficiency of different glove models in reducing vibration transmitted by the micro tractor/rotary tiller assembly according to the operating velocity and the rotation of the rotary tiller rotor. A completely randomized block design was used in a 4 x 2 x 2 factorial arrangement with five replicates. The study analyzed three glove models (G1 and G2 anti-vibration models, and anti-impact model G3) and a control treatment under the same operating conditions, but without the use of protective equipment. The study was conducted at two operating velocities (V1 = 0.98 km h-1 and V2 = 1.6 km h-1) and two rotations of the rotary tiller rotor (R1 = 265 rpm and R2 = 520 rpm). None of the evaluated glove models reached the attenuation capacity required by the Occupational Hygiene Standard (Norma de Higiene Ocupacional - NHO 10) and, under some operating conditions, they raised the incident vibration levels, exceeding the values obtained when the work was performed without a protective equipment. Although the anti-impact model G3 and the anti-vibration model G2 did not reduce the transmitted vibration to the levels considered acceptable by NHO 10, the anti-impact G3 and anti-vibration G2 models showed better performance in the work performed at a velocity of 0.98 km h-1 and a rotation of 520 rpm of the rotary tiller rotor.
期刊介绍:
A Revista Brasileira de Engenharia Agrícola e Ambiental (Agriambi), periódico oficial da Asociación Latinoamericana y del Caribe de Ingeniería Agrícola (ALIA), é editada mensalmente, no formato eletrônico, pela Unidade Acadêmica de Engenharia Agrícola (UAEA) do Centro de Tecnologia e Recursos Naturais (CTRN) da Universidade Federal de Campina Grande (UFCG), destinando-se à divulgação de artigos científicos originais e inéditos, elaborados em Português, Inglês ou Espanhol. Com o auxílio de pareceres de Consultores, os artigos são aceitos ou não pela Equipe Editorial para publicação na Revista. A Agriambi aceita, também, a submissão de contribuições na modalidade de revisão de literatura.