Estimating the number of communities in the stochastic block model with outliers

IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jingsong Xiao, Fei Ye, Weidong Ma, Ying Yang
{"title":"Estimating the number of communities in the stochastic block model with outliers","authors":"Jingsong Xiao, Fei Ye, Weidong Ma, Ying Yang","doi":"10.1093/comnet/cnac042","DOIUrl":null,"url":null,"abstract":"\n The stochastic block model (SBM) is a popular model for community detecting problems. Many community detecting approaches have been proposed, and most of them assume that the number of communities is given previously. However, in practice, the number of communities is often unknown. Plenty of approaches were proposed to estimate the number of communities, but most of them were computationally intensive. Moreover, when outliers exist, there are no approaches to consistently estimate the number of communities. In this article, we propose a fast method based on the eigenvalues of the regularized and normalized adjacency matrix to estimate the number of communities under the SBM with outliers. We show that our method can consistently estimate the number of communities when outliers exist. Moreover, we extend our method to the degree-corrected SBM. We show that our approach is comparable to the other existing approaches in simulations. We also illustrate our approach on four real-world networks.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"7 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnac042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The stochastic block model (SBM) is a popular model for community detecting problems. Many community detecting approaches have been proposed, and most of them assume that the number of communities is given previously. However, in practice, the number of communities is often unknown. Plenty of approaches were proposed to estimate the number of communities, but most of them were computationally intensive. Moreover, when outliers exist, there are no approaches to consistently estimate the number of communities. In this article, we propose a fast method based on the eigenvalues of the regularized and normalized adjacency matrix to estimate the number of communities under the SBM with outliers. We show that our method can consistently estimate the number of communities when outliers exist. Moreover, we extend our method to the degree-corrected SBM. We show that our approach is comparable to the other existing approaches in simulations. We also illustrate our approach on four real-world networks.
带离群值的随机块模型中群落数量的估计
随机块模型(SBM)是一种流行的社区检测模型。目前已经提出了许多社区检测方法,但大多数方法都假设社区的数量是预先给定的。然而,在实践中,社区的数量往往是未知的。人们提出了许多估算社区数量的方法,但大多数方法都是计算密集型的。此外,当存在异常值时,没有办法一致地估计社区的数量。本文提出了一种基于正则化和归一化邻接矩阵特征值的快速估计带有异常值的SBM下的群落数的方法。结果表明,当存在异常值时,我们的方法可以一致地估计社区的数量。此外,我们将该方法推广到度校正SBM。我们在模拟中证明了我们的方法与其他现有方法相当。我们还在四个现实世界的网络中说明了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of complex networks
Journal of complex networks MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.20
自引率
9.50%
发文量
40
期刊介绍: Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信