Sensitivity Analysis of Neural Network Hyperparameters for Chromatic Dispersion Compensation in Optical Transmissions

Fernanda E. C. Chaves, E. S. Rosa, T. Sutili, R. Figueiredo
{"title":"Sensitivity Analysis of Neural Network Hyperparameters for Chromatic Dispersion Compensation in Optical Transmissions","authors":"Fernanda E. C. Chaves, E. S. Rosa, T. Sutili, R. Figueiredo","doi":"10.1109/OMN/SBFotonIOPC58971.2023.10230915","DOIUrl":null,"url":null,"abstract":"To verify and validate the use of machine learning techniques for chromatic dispersion compensation, we developed an end-to-end recurrent neural network (RNN) to replace the digital signal processing (DSP) blocks used in optical transmission and reception. We also evaluated the sensitivity of the developed networks to certain hyperparameters. Our analysis indicated that the number of neurons and the number of epochs were the most impactful parameters, and we also observed that using lower values for these parameters resulted in performance that was closer to that of a conventional DSP implementation.","PeriodicalId":31141,"journal":{"name":"Netcom","volume":"2 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netcom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN/SBFotonIOPC58971.2023.10230915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To verify and validate the use of machine learning techniques for chromatic dispersion compensation, we developed an end-to-end recurrent neural network (RNN) to replace the digital signal processing (DSP) blocks used in optical transmission and reception. We also evaluated the sensitivity of the developed networks to certain hyperparameters. Our analysis indicated that the number of neurons and the number of epochs were the most impactful parameters, and we also observed that using lower values for these parameters resulted in performance that was closer to that of a conventional DSP implementation.
光学传输色散补偿中神经网络超参数的灵敏度分析
为了验证和验证机器学习技术在色散补偿中的使用,我们开发了一个端到端递归神经网络(RNN)来取代光传输和接收中使用的数字信号处理(DSP)块。我们还评估了开发的网络对某些超参数的敏感性。我们的分析表明,神经元数量和epoch数量是最具影响力的参数,我们还观察到,使用这些参数的较低值导致性能更接近传统DSP实现的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信