Attention-based Deep Learning Model for Arabic Handwritten Text Recognition

Takwa Ben Aïcha Gader, Afef Kacem Echi
{"title":"Attention-based Deep Learning Model for Arabic Handwritten Text Recognition","authors":"Takwa Ben Aïcha Gader, Afef Kacem Echi","doi":"10.22630/mgv.2022.31.1.3","DOIUrl":null,"url":null,"abstract":"This work proposes a segmentation-free approach to Arabic Handwritten Text Recognition (AHTR): an attention-based Convolutional Neural Network - Recurrent Neural Network - Connectionist Temporal Classification (CNN-RNN-CTC) deep learning architecture. The model receives as input an image and provides, through a CNN, a sequence of essential features, which are transferred to an Attention-based Bidirectional Long Short-Term Memory Network (BLSTM). The BLSTM gives features sequence in order, and the attention mechanism allows the selection of relevant information from the features sequences. The selected information is then fed to the CTC, enabling the loss calculation and the transcription prediction. The contribution lies in extending the CNN by dropout layers, batch normalization, and dropout regularization parameters to prevent over-fitting. The output of the RNN block is passed through an attention mechanism to utilize the most relevant parts of the input sequence in a flexible manner. This solution enhances previous methods by improving the CNN speed and performance and controlling over model over-fitting. The proposed system achieves the best accuracy of 97.1% for the IFN-ENIT Arabic script database, which competes with the current state-of-the-art. It was also tested for the modern English handwriting of the IAM database, and the Character Error Rate of 2.9% is attained, which confirms the model's script independence.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2022.31.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a segmentation-free approach to Arabic Handwritten Text Recognition (AHTR): an attention-based Convolutional Neural Network - Recurrent Neural Network - Connectionist Temporal Classification (CNN-RNN-CTC) deep learning architecture. The model receives as input an image and provides, through a CNN, a sequence of essential features, which are transferred to an Attention-based Bidirectional Long Short-Term Memory Network (BLSTM). The BLSTM gives features sequence in order, and the attention mechanism allows the selection of relevant information from the features sequences. The selected information is then fed to the CTC, enabling the loss calculation and the transcription prediction. The contribution lies in extending the CNN by dropout layers, batch normalization, and dropout regularization parameters to prevent over-fitting. The output of the RNN block is passed through an attention mechanism to utilize the most relevant parts of the input sequence in a flexible manner. This solution enhances previous methods by improving the CNN speed and performance and controlling over model over-fitting. The proposed system achieves the best accuracy of 97.1% for the IFN-ENIT Arabic script database, which competes with the current state-of-the-art. It was also tested for the modern English handwriting of the IAM database, and the Character Error Rate of 2.9% is attained, which confirms the model's script independence.
基于注意力的阿拉伯语手写文本识别深度学习模型
这项工作提出了一种无分割的阿拉伯语手写文本识别(AHTR)方法:一种基于注意力的卷积神经网络-循环神经网络-连接主义时间分类(CNN-RNN-CTC)深度学习架构。该模型接收图像作为输入,并通过CNN提供一系列基本特征,这些特征被转移到基于注意力的双向长短期记忆网络(BLSTM)。BLSTM按顺序给出特征序列,注意机制允许从特征序列中选择相关信息。然后将选择的信息馈送到CTC,使损失计算和转录预测成为可能。其贡献在于通过dropout层、批处理归一化和dropout正则化参数来扩展CNN,以防止过拟合。RNN块的输出通过注意机制传递,以灵活的方式利用输入序列中最相关的部分。该解决方案通过提高CNN的速度和性能以及控制模型过拟合来改进先前的方法。该系统在IFN-ENIT阿拉伯文字数据库中达到97.1%的最佳准确率,可与当前最先进的系统竞争。并对IAM数据库的现代英语笔迹进行了测试,得到了2.9%的字符错误率,证实了该模型的文字独立性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine Graphics and Vision
Machine Graphics and Vision Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
0.40
自引率
0.00%
发文量
1
期刊介绍: Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信