{"title":"Feasibility of Hybrid PSO-ANN Model for Identifying Soybean Diseases","authors":"Miaomiao Ji, Peng Liu, Qiufeng Wu","doi":"10.4018/ijcini.290328","DOIUrl":null,"url":null,"abstract":"Soybean disease has become one of vital factors restricting the sustainable development of high-yield and high-quality soybean industry. A hybrid artificial neural network (ANN) model optimized via particle swarm optimization (PSO) algorithm, which is denoted as PSO-ANN, is proposed in this paper for soybean diseases identification based on categorical feature inputs. Augmentation dataset is created via Synthetic minority over-sampling technique (SMOTE) to deal with quantitative insufficiency and categorical unbalance of the dataset. PSO algorithm is used to optimize the parameters in ANN, including the activation function, the number of hidden layers, the number of neurons in each hidden layer and the optimizer. In the end, ANN model with 2 hidden layers, 63 and 61 neurons in hidden layers respectively, Relu activation function and Adam optimizer yields the best overall test accuracy of 92.00%, compared with traditional machine learning methods. PSO-ANN shows superiority on various evaluation metrics, which may have great potential in crop diseases control for modern agriculture.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"13 1","pages":"1-16"},"PeriodicalIF":0.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.290328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
Soybean disease has become one of vital factors restricting the sustainable development of high-yield and high-quality soybean industry. A hybrid artificial neural network (ANN) model optimized via particle swarm optimization (PSO) algorithm, which is denoted as PSO-ANN, is proposed in this paper for soybean diseases identification based on categorical feature inputs. Augmentation dataset is created via Synthetic minority over-sampling technique (SMOTE) to deal with quantitative insufficiency and categorical unbalance of the dataset. PSO algorithm is used to optimize the parameters in ANN, including the activation function, the number of hidden layers, the number of neurons in each hidden layer and the optimizer. In the end, ANN model with 2 hidden layers, 63 and 61 neurons in hidden layers respectively, Relu activation function and Adam optimizer yields the best overall test accuracy of 92.00%, compared with traditional machine learning methods. PSO-ANN shows superiority on various evaluation metrics, which may have great potential in crop diseases control for modern agriculture.
期刊介绍:
The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.