Modeling and Parameter Identification of Piezoelectric Actuator in Micropositioning Systems

Sara Tayouri, I. Izadi, J. Ghaisari
{"title":"Modeling and Parameter Identification of Piezoelectric Actuator in Micropositioning Systems","authors":"Sara Tayouri, I. Izadi, J. Ghaisari","doi":"10.1109/IranianCEE.2019.8786431","DOIUrl":null,"url":null,"abstract":"Due to the development of technology, actuators possessing high precision performances are increasingly needed more than before. Because of their high precision, fast expansion, and independence from the magnetic field, piezoelectric actuators are superior in comparison to other actuators based on smart materials. However, hysteresis, creep, and vibrational dynamics are challenges faced while working with piezoelectric actuators. Among those characteristics, hysteresis, which is a nonlinear behavior, degrades precision, bandwidth, and accuracy. In this paper, a dynamical model for a piezoelectric actuator is obtained, and the parameters of the hysteresis, vibration, and creep models are calculated. The Levenberg-Marquardt algorithm is used for identification of the parameters of the Normalized Bouc-Wen, and the C-H model. The calculated models are tested and validated by applying a multi-sine wave as an input to the experimental setup. Also, a differential equation form for the C-H model is calculated which can be used to design a nonlinear controller. The obtained nonlinear hysteresis, linear creep, and linear vibration models can then be connected in series to provide a model to describe the main characteristics of a piezoelectric actuator.","PeriodicalId":6683,"journal":{"name":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","volume":"34 1","pages":"1193-1198"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IranianCEE.2019.8786431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to the development of technology, actuators possessing high precision performances are increasingly needed more than before. Because of their high precision, fast expansion, and independence from the magnetic field, piezoelectric actuators are superior in comparison to other actuators based on smart materials. However, hysteresis, creep, and vibrational dynamics are challenges faced while working with piezoelectric actuators. Among those characteristics, hysteresis, which is a nonlinear behavior, degrades precision, bandwidth, and accuracy. In this paper, a dynamical model for a piezoelectric actuator is obtained, and the parameters of the hysteresis, vibration, and creep models are calculated. The Levenberg-Marquardt algorithm is used for identification of the parameters of the Normalized Bouc-Wen, and the C-H model. The calculated models are tested and validated by applying a multi-sine wave as an input to the experimental setup. Also, a differential equation form for the C-H model is calculated which can be used to design a nonlinear controller. The obtained nonlinear hysteresis, linear creep, and linear vibration models can then be connected in series to provide a model to describe the main characteristics of a piezoelectric actuator.
微定位系统中压电驱动器的建模与参数辨识
由于技术的发展,对具有高精度性能的执行机构的需求越来越大。压电致动器具有精度高、扩展速度快、不受磁场影响等优点,与其他基于智能材料的致动器相比具有优势。然而,在使用压电作动器时,滞后、蠕变和振动动力学是面临的挑战。在这些特性中,迟滞是一种非线性行为,会降低精度、带宽和精度。本文建立了压电作动器的动力学模型,并计算了滞回、振动和蠕变模型的参数。采用Levenberg-Marquardt算法对归一化Bouc-Wen和C-H模型的参数进行识别。通过在实验装置中应用多正弦波作为输入,对计算模型进行了测试和验证。同时,计算了C-H模型的微分方程形式,可用于非线性控制器的设计。得到的非线性迟滞、线性蠕变和线性振动模型可以串联起来,提供一个描述压电驱动器主要特性的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信