{"title":"Energy-Adaptive Real-time Sensing for Batteryless Devices","authors":"Mohsen Karimi, Yidi Wang, Hyoseung Kim","doi":"10.1109/RTCSA55878.2022.00028","DOIUrl":null,"url":null,"abstract":"The use of batteryless energy harvesting devices has been recognized as a promising solution for their low maintenance requirements and ability to work in harsh environments. However, these devices have to harvest energy from ambient energy sources and execute real-time sensing tasks periodically while satisfying data freshness constraints, which is especially challenging as the energy sources are often unreliable and intermittent. In this paper, we develop an energy-adaptive real-time sensing framework for batteryless devices. This framework includes a lightweight machine learning-based energy predictor that is capable of running on microcontroller devices and predicting the energy availability and intensity based on energy traces. Using this, the framework adapts the schedule of real-time tasks by effectively taking into account the predicted energy supply and the resulting age of information of each task, in order to achieve continuous sensing operations and satisfy given data freshness requirements. We discuss various design choices for adaptive scheduling and evaluate their performance in the context of batteryless devices. Experimental results show that the proposed adaptive real-time approach outperforms the recent methods based on static and reactive approaches, in both energy utilization and data freshness.","PeriodicalId":38446,"journal":{"name":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","volume":"171 1","pages":"205-211"},"PeriodicalIF":0.5000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTCSA55878.2022.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3
Abstract
The use of batteryless energy harvesting devices has been recognized as a promising solution for their low maintenance requirements and ability to work in harsh environments. However, these devices have to harvest energy from ambient energy sources and execute real-time sensing tasks periodically while satisfying data freshness constraints, which is especially challenging as the energy sources are often unreliable and intermittent. In this paper, we develop an energy-adaptive real-time sensing framework for batteryless devices. This framework includes a lightweight machine learning-based energy predictor that is capable of running on microcontroller devices and predicting the energy availability and intensity based on energy traces. Using this, the framework adapts the schedule of real-time tasks by effectively taking into account the predicted energy supply and the resulting age of information of each task, in order to achieve continuous sensing operations and satisfy given data freshness requirements. We discuss various design choices for adaptive scheduling and evaluate their performance in the context of batteryless devices. Experimental results show that the proposed adaptive real-time approach outperforms the recent methods based on static and reactive approaches, in both energy utilization and data freshness.