V. Kuznetsov, M. Tryputen, A. Nikolenko, D. Tsyplenkov, V. Kuvaiev, O. Savvin
{"title":"Identification of the thermal process in an induction motor","authors":"V. Kuznetsov, M. Tryputen, A. Nikolenko, D. Tsyplenkov, V. Kuvaiev, O. Savvin","doi":"10.33271/crpnmu/71.116","DOIUrl":null,"url":null,"abstract":"Purpose: synthesis of a mathematical model of an asynchronous motor, taking into account the impact of changes in the quality of electricity on the processes of heating and heat exchange for an economically justified choice of means of protection. Methodology: Theoretical substantiation of the expediency of using a one-mass thermal model of an asynchronous motor, for the conditions of operation of the latter in conditions of low-quality electricity, in order to determine losses in it. Results: Experimental studies of the operation of an asynchronous motor at nominal load were carried out. The obtained results of the measurements made it possible to determine the parameters of the single-mass thermal model, the heat transfer coefficient of the engine, and the coefficient of its heat capacity.A single-mass thermal model of an induction motor is a mathematical model used to describe the thermal processes occurring in an induction motor. This model is based on the assumption that all motor elements can be combined into one mass that heats up during engine operation. The model assumes that the thermal capacity of the motor is a constant, and the heat flow that is released during the operation of the motor is proportional to the square of the current passing through the motor windings. In addition, the model assumes the presence of thermal conductivity between the mass of the motor and the external environment, which affects the rate of heat dissipation. Scientific novelty: A methodology for determining losses in an asynchronous motor using a synthesized mathematical model is proposed, taking into account the influence of changes in the quality of electricity on the processes of heating and heat exchange in it. Practical significance: The obtained results indicate the adequacy of the proposed thermal model of an asynchronous motor operating in a network with low-quality electricity. Taking into account the fact that for many types of engines in the reference literature,there are no necessary data on the coefficients of heat transfer and heat capacity, and only the thermal time constants for certain types of engines are given, the value of the specified parameters of the model can be obtained on the basis of the methodology presented in the work.A single-mass thermal model can be useful for analyzing the thermal processes occurring in an induction motor and for improving the efficiency of the motor. In particular, it can help determine the optimal operating temperature of the motor, as well as calculate the necessary cooling system to ensure stable operation of the motor under conditions of variable load and temperature conditions.","PeriodicalId":10466,"journal":{"name":"Collection of Research Papers of the National Mining University","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of Research Papers of the National Mining University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/crpnmu/71.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: synthesis of a mathematical model of an asynchronous motor, taking into account the impact of changes in the quality of electricity on the processes of heating and heat exchange for an economically justified choice of means of protection. Methodology: Theoretical substantiation of the expediency of using a one-mass thermal model of an asynchronous motor, for the conditions of operation of the latter in conditions of low-quality electricity, in order to determine losses in it. Results: Experimental studies of the operation of an asynchronous motor at nominal load were carried out. The obtained results of the measurements made it possible to determine the parameters of the single-mass thermal model, the heat transfer coefficient of the engine, and the coefficient of its heat capacity.A single-mass thermal model of an induction motor is a mathematical model used to describe the thermal processes occurring in an induction motor. This model is based on the assumption that all motor elements can be combined into one mass that heats up during engine operation. The model assumes that the thermal capacity of the motor is a constant, and the heat flow that is released during the operation of the motor is proportional to the square of the current passing through the motor windings. In addition, the model assumes the presence of thermal conductivity between the mass of the motor and the external environment, which affects the rate of heat dissipation. Scientific novelty: A methodology for determining losses in an asynchronous motor using a synthesized mathematical model is proposed, taking into account the influence of changes in the quality of electricity on the processes of heating and heat exchange in it. Practical significance: The obtained results indicate the adequacy of the proposed thermal model of an asynchronous motor operating in a network with low-quality electricity. Taking into account the fact that for many types of engines in the reference literature,there are no necessary data on the coefficients of heat transfer and heat capacity, and only the thermal time constants for certain types of engines are given, the value of the specified parameters of the model can be obtained on the basis of the methodology presented in the work.A single-mass thermal model can be useful for analyzing the thermal processes occurring in an induction motor and for improving the efficiency of the motor. In particular, it can help determine the optimal operating temperature of the motor, as well as calculate the necessary cooling system to ensure stable operation of the motor under conditions of variable load and temperature conditions.