Deciding parity games in quasipolynomial time

Cristian S. Calude, Sanjay Jain, B. Khoussainov, Wei Li, F. Stephan
{"title":"Deciding parity games in quasipolynomial time","authors":"Cristian S. Calude, Sanjay Jain, B. Khoussainov, Wei Li, F. Stephan","doi":"10.1145/3055399.3055409","DOIUrl":null,"url":null,"abstract":"It is shown that the parity game can be solved in quasipolynomial time. The parameterised parity game - with n nodes and m distinct values (aka colours or priorities) - is proven to be in the class of fixed parameter tractable (FPT) problems when parameterised over m. Both results improve known bounds, from runtime nO(√n) to O(nlog(m)+6) and from an XP-algorithm with runtime O(nΘ(m)) for fixed parameter m to an FPT-algorithm with runtime O(n5)+g(m), for some function g depending on m only. As an application it is proven that coloured Muller games with n nodes and m colours can be decided in time O((mm · n)5); it is also shown that this bound cannot be improved to O((2m · n)c), for any c, unless FPT = W[1].","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"215","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 215

Abstract

It is shown that the parity game can be solved in quasipolynomial time. The parameterised parity game - with n nodes and m distinct values (aka colours or priorities) - is proven to be in the class of fixed parameter tractable (FPT) problems when parameterised over m. Both results improve known bounds, from runtime nO(√n) to O(nlog(m)+6) and from an XP-algorithm with runtime O(nΘ(m)) for fixed parameter m to an FPT-algorithm with runtime O(n5)+g(m), for some function g depending on m only. As an application it is proven that coloured Muller games with n nodes and m colours can be decided in time O((mm · n)5); it is also shown that this bound cannot be improved to O((2m · n)c), for any c, unless FPT = W[1].
在拟多项式时间内决定奇偶对策
证明了奇偶对策可以在拟多项式时间内求解。参数化的parity博弈-具有n个节点和m个不同的值(又名颜色或优先级)-被证明在参数化m时属于固定参数可处理(FPT)问题的类别。两个结果都改进了已知的界限,从运行时间nO(√n)到O(nlog(m)+6),以及从运行时间O(nΘ(m))的xp算法到运行时间O(n5)+g(m)的FPT算法,对于某些函数g仅依赖于m。作为一个应用,证明了n个节点m种颜色的有色穆勒对策可以在O((mm·n)5)时间内确定;还证明了该界不能改进为O((2m·n)c),对于任何c,除非FPT = W[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信