{"title":"What comes after the Sun? On the integration of soil biogeochemical pre-weathering into microplastic experiments","authors":"F. Büks, M. Kaupenjohann","doi":"10.5194/soil-8-373-2022","DOIUrl":null,"url":null,"abstract":"Abstract. Recent studies have been engaged in estimating the adverse effects of microplastic (MP) on soil quality parameters. Mass concentrations of MP, as found in highly contaminated soils, have been shown to weaken the soil structure, and parts of the edaphon are adversely affected mainly by the\n<100 µm MP size fraction. However, the vast majority of these studies used pristine particles, which have surface characteristics different from those of environmental MP. Exposed to UV radiation, plastic\nundergoes photochemical weathering with embrittlement and the formation of surface charge, leading to an alteration of physiochemical behavior. When plastic particles then enter the soil environment, further aging factors appear with yet unknown efficacy. This little explored soil biogeochemical phase includes biofilm cover, decay with enzymes (as shown in laboratory experiments with both conventional and biodegradable plastics), contact with biotic and abiotic acids, oxidants, and uptake by the soil fauna that causes physical fragmentation. Such transformation of the surfaces is assumed to affect soil aggregation processes, soil faunal health, and the transport of\nplastic colloids and adsorbed solubles. This perspective article encourages us to consider the weathering history of MP in soil experiments and highlights the need for reproducing the surface characteristics of soil MP to conduct laboratory experiments with closer-to-nature results.\n","PeriodicalId":22015,"journal":{"name":"Soil Science","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/soil-8-373-2022","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract. Recent studies have been engaged in estimating the adverse effects of microplastic (MP) on soil quality parameters. Mass concentrations of MP, as found in highly contaminated soils, have been shown to weaken the soil structure, and parts of the edaphon are adversely affected mainly by the
<100 µm MP size fraction. However, the vast majority of these studies used pristine particles, which have surface characteristics different from those of environmental MP. Exposed to UV radiation, plastic
undergoes photochemical weathering with embrittlement and the formation of surface charge, leading to an alteration of physiochemical behavior. When plastic particles then enter the soil environment, further aging factors appear with yet unknown efficacy. This little explored soil biogeochemical phase includes biofilm cover, decay with enzymes (as shown in laboratory experiments with both conventional and biodegradable plastics), contact with biotic and abiotic acids, oxidants, and uptake by the soil fauna that causes physical fragmentation. Such transformation of the surfaces is assumed to affect soil aggregation processes, soil faunal health, and the transport of
plastic colloids and adsorbed solubles. This perspective article encourages us to consider the weathering history of MP in soil experiments and highlights the need for reproducing the surface characteristics of soil MP to conduct laboratory experiments with closer-to-nature results.
期刊介绍:
Cessation.Soil Science satisfies the professional needs of all scientists and laboratory personnel involved in soil and plant research by publishing primary research reports and critical reviews of basic and applied soil science, especially as it relates to soil and plant studies and general environmental soil science.
Each month, Soil Science presents authoritative research articles from an impressive array of discipline: soil chemistry and biochemistry, physics, fertility and nutrition, soil genesis and morphology, soil microbiology and mineralogy. Of immediate relevance to soil scientists-both industrial and academic-this unique publication also has long-range value for agronomists and environmental scientists.