Generalization of numerical range of polynomial operator matrices

Darawan Zrar Mohammed, Ahmed Muhammad
{"title":"Generalization of numerical range of polynomial operator matrices","authors":"Darawan Zrar Mohammed, Ahmed Muhammad","doi":"10.25130/tjps.v28i1.1268","DOIUrl":null,"url":null,"abstract":"Suppose that  is a polynomial matrix operator where  for , are  complex matrix and let  be a complex variable. For an  Hermitian matrix , we define the -numerical range of polynomial matrix of  as , where . In this paper we study   and our emphasis is on the geometrical properties of . We consider the location of   in the complex plane and  a theorem concerning  the boundary of is also obtained.  Possible generalazations of our results including their extensions to bounded linerar operators on an infinite dimensional Hilbert space are described.","PeriodicalId":23142,"journal":{"name":"Tikrit Journal of Pure Science","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tikrit Journal of Pure Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25130/tjps.v28i1.1268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Suppose that  is a polynomial matrix operator where  for , are  complex matrix and let  be a complex variable. For an  Hermitian matrix , we define the -numerical range of polynomial matrix of  as , where . In this paper we study   and our emphasis is on the geometrical properties of . We consider the location of   in the complex plane and  a theorem concerning  the boundary of is also obtained.  Possible generalazations of our results including their extensions to bounded linerar operators on an infinite dimensional Hilbert space are described.
多项式算子矩阵数值范围的推广
设为多项式矩阵算子,为复矩阵,设为复变量。对于厄米矩阵,我们定义了a的多项式矩阵的-数值范围,其中。的几何性质是本文研究的重点。考虑点在复平面上的位置,得到了点的边界定理。描述了我们的结果的可能推广,包括它们在无限维希尔伯特空间上的有界线性算子的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信