{"title":"Evolution of Gold Nanoparticles in Radiation Environments","authors":"S. Briggs, K. Hattar","doi":"10.5772/INTECHOPEN.80366","DOIUrl":null,"url":null,"abstract":"Gold nanoparticles are being explored for several applications in radiation environments, including uses in cancer radiotherapy treatments and advanced satellite or detector applications. In these applications, nanoparticle interactions with energetic neutrons, photons, and charged particles can cause structural damage ranging from single atom displacement events to bulk morphological changes. Due to the diminutive length scales and prodigious surface-to-volume ratios of gold nanoparticles, radiation damage effects are typically dominated by sputtering and surface interactions and can vary drastically from bulk behavior and classical models. Here, we report on contemporary experimental and computational modeling efforts that have contributed to the current understanding of how ionizing radiation environments affect the structure and properties of gold nanoparticles. The future potential for elucidating the active mechanisms in gold nanoparticles exposed to ionizing radiation and the subsequent ability to predictively model the radiation stability and ion beam modification parameters will be discussed.","PeriodicalId":12764,"journal":{"name":"Gold Nanoparticles - Reaching New Heights","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Nanoparticles - Reaching New Heights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Gold nanoparticles are being explored for several applications in radiation environments, including uses in cancer radiotherapy treatments and advanced satellite or detector applications. In these applications, nanoparticle interactions with energetic neutrons, photons, and charged particles can cause structural damage ranging from single atom displacement events to bulk morphological changes. Due to the diminutive length scales and prodigious surface-to-volume ratios of gold nanoparticles, radiation damage effects are typically dominated by sputtering and surface interactions and can vary drastically from bulk behavior and classical models. Here, we report on contemporary experimental and computational modeling efforts that have contributed to the current understanding of how ionizing radiation environments affect the structure and properties of gold nanoparticles. The future potential for elucidating the active mechanisms in gold nanoparticles exposed to ionizing radiation and the subsequent ability to predictively model the radiation stability and ion beam modification parameters will be discussed.