{"title":"Firefly-Aquila optimized Deep Q network for handoff management in context aware video streaming-based heterogeneous wireless networks","authors":"Uttam P. Waghmode, U. Kolekar","doi":"10.3233/web-220090","DOIUrl":null,"url":null,"abstract":"Handoff management is the method in which the mobile node maintains its connection active when it shifts from location to other. The devastating success of mobile devices as well as wireless communications is emphasizing the requirement for the expansion of mobility-aware facilities. Moreover, the mobility of devices requires services adapting their behavior to abrupt context variations and being conscious of handoffs, which make an intermittent discontinuities and unpredictable delays. Thus, the heterogeneity of wireless network devices confuses the situation, since a dissimilar treatment of handoffs and context-awareness is essential for every solution. Hence, this paper introduced the Deep Q network-based Firefly Aquila Optimizer (DQN-FAO) for performing the handoff management. In order to establish the handoff management, the process of selecting network is very important. Here, the network is selected based on the devised FAO algorithm, which is the consolidation of Aquila Optimizer (AO) and Firefly algorithm (FA) that considers the metrics, such as Jitter, Handoff latency, and Received Signal Strength Indicator (RSSI) as fitness function. Moreover, the handover decision is taken by the DQN, where the hyper-parameters are tuned by the devised FAO algorithm. According to the hand over decision taken, the context aware video streaming is happened by adjusting the bit rate of the videos using network bandwidth. Besides, the devised scheme attained the superior performance based on the call drop, energy consumption, handover delay, throughput, handoff latency, and PSNR of 0.5122, 7.086 J, 10.54 ms, 13.17 Mbps, 93.80 ms and 46.89 dB.","PeriodicalId":42775,"journal":{"name":"Web Intelligence","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-220090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Handoff management is the method in which the mobile node maintains its connection active when it shifts from location to other. The devastating success of mobile devices as well as wireless communications is emphasizing the requirement for the expansion of mobility-aware facilities. Moreover, the mobility of devices requires services adapting their behavior to abrupt context variations and being conscious of handoffs, which make an intermittent discontinuities and unpredictable delays. Thus, the heterogeneity of wireless network devices confuses the situation, since a dissimilar treatment of handoffs and context-awareness is essential for every solution. Hence, this paper introduced the Deep Q network-based Firefly Aquila Optimizer (DQN-FAO) for performing the handoff management. In order to establish the handoff management, the process of selecting network is very important. Here, the network is selected based on the devised FAO algorithm, which is the consolidation of Aquila Optimizer (AO) and Firefly algorithm (FA) that considers the metrics, such as Jitter, Handoff latency, and Received Signal Strength Indicator (RSSI) as fitness function. Moreover, the handover decision is taken by the DQN, where the hyper-parameters are tuned by the devised FAO algorithm. According to the hand over decision taken, the context aware video streaming is happened by adjusting the bit rate of the videos using network bandwidth. Besides, the devised scheme attained the superior performance based on the call drop, energy consumption, handover delay, throughput, handoff latency, and PSNR of 0.5122, 7.086 J, 10.54 ms, 13.17 Mbps, 93.80 ms and 46.89 dB.
期刊介绍:
Web Intelligence (WI) is an official journal of the Web Intelligence Consortium (WIC), an international organization dedicated to promoting collaborative scientific research and industrial development in the era of Web intelligence. WI seeks to collaborate with major societies and international conferences in the field. WI is a peer-reviewed journal, which publishes four issues a year, in both online and print form. WI aims to achieve a multi-disciplinary balance between research advances in theories and methods usually associated with Collective Intelligence, Data Science, Human-Centric Computing, Knowledge Management, and Network Science. It is committed to publishing research that both deepen the understanding of computational, logical, cognitive, physical, and social foundations of the future Web, and enable the development and application of technologies based on Web intelligence. The journal features high-quality, original research papers (including state-of-the-art reviews), brief papers, and letters in all theoretical and technology areas that make up the field of WI. The papers should clearly focus on some of the following areas of interest: a. Collective Intelligence[...] b. Data Science[...] c. Human-Centric Computing[...] d. Knowledge Management[...] e. Network Science[...]