Infinitely Many Solutions for the Fractional Nonlinear Schrödinger Equations of a New Type

Pub Date : 2022-06-01 DOI:10.4208/jpde.v35.n3.5
Qing Guo null, Lixiu Duan
{"title":"Infinitely Many Solutions for the Fractional Nonlinear Schrödinger Equations of a New Type","authors":"Qing Guo null, Lixiu Duan","doi":"10.4208/jpde.v35.n3.5","DOIUrl":null,"url":null,"abstract":". This paper, we study the multiplicity of solutions for the fractional Schr¨odinger equation with s ∈ ( 0,1 ) , N ≥ 3, p ∈ ( 1, 2 N N − 2 s − 1 ) and lim | y |→ + ∞ V ( y ) > 0. By assuming suitable decay property of the radial potential V ( y ) = V ( | y | ) , we construct another type of solutions concentrating at infinite vertices of two similar equilateral polygonal with infinitely large length of sides. Hence, besides the length of each polygonal, we must consider one more parameter, that is the height of the podetium, simultaneously. Another difficulty lies in the non-local property of the operator ( − ∆ ) s and the algebraic decay involving the approximation solutions make the estimates become more subtle.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v35.n3.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. This paper, we study the multiplicity of solutions for the fractional Schr¨odinger equation with s ∈ ( 0,1 ) , N ≥ 3, p ∈ ( 1, 2 N N − 2 s − 1 ) and lim | y |→ + ∞ V ( y ) > 0. By assuming suitable decay property of the radial potential V ( y ) = V ( | y | ) , we construct another type of solutions concentrating at infinite vertices of two similar equilateral polygonal with infinitely large length of sides. Hence, besides the length of each polygonal, we must consider one more parameter, that is the height of the podetium, simultaneously. Another difficulty lies in the non-local property of the operator ( − ∆ ) s and the algebraic decay involving the approximation solutions make the estimates become more subtle.
分享
查看原文
一类新型分数阶非线性Schrödinger方程的无穷多解
. 本文研究了s∈(0,1),N≥3,p∈(1,2 N N−2 s−1),lim | y |→+∞V (y) > 0的分数阶Schr¨odinger方程解的多重性。通过假设径向势V (y) = V (| y |)具有合适的衰减性质,构造了另一类集中于两个边长无限大的类似等边多边形无穷顶点处的解。因此,除了每个多边形的长度外,我们还必须同时考虑另一个参数,即足架的高度。另一个困难在于算子(−∆)s的非局部性质,以及涉及近似解的代数衰减使估计变得更加微妙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信