Recovery by discretization corrected particle strength exchange (DC PSE) operators

Benjamin F. Zwick, G. Bourantas, F. Alkhatib, A. Wittek, K. Miller
{"title":"Recovery by discretization corrected particle strength exchange (DC PSE) operators","authors":"Benjamin F. Zwick, G. Bourantas, F. Alkhatib, A. Wittek, K. Miller","doi":"10.48550/arXiv.2204.14089","DOIUrl":null,"url":null,"abstract":"A new recovery technique based on discretization corrected particle strength exchange (DC PSE) operators is developed in this paper. DC PSE is a collocation method that can be used to compute derivatives directly at nodal points, instead of by projection from Gauss points as is done in many finite element-based recovery techniques. The proposed method is truly meshless and does not require patches of elements to be defined, which makes it generally applicable to point clouds and arbitrary element topologies. Numerical examples show that the proposed method is accurate and robust.","PeriodicalId":7991,"journal":{"name":"Appl. Math. Comput.","volume":"48 1","pages":"127923"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Appl. Math. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.14089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A new recovery technique based on discretization corrected particle strength exchange (DC PSE) operators is developed in this paper. DC PSE is a collocation method that can be used to compute derivatives directly at nodal points, instead of by projection from Gauss points as is done in many finite element-based recovery techniques. The proposed method is truly meshless and does not require patches of elements to be defined, which makes it generally applicable to point clouds and arbitrary element topologies. Numerical examples show that the proposed method is accurate and robust.
通过离散化修正粒子强度交换(DC PSE)操作恢复
本文提出了一种基于离散化修正粒子强度交换算子的恢复技术。DC PSE是一种配置方法,可以直接在节点处计算导数,而不是像许多基于有限元的恢复技术那样从高斯点进行投影。该方法是一种真正意义上的无网格方法,不需要定义单元块,适用于点云和任意单元拓扑。数值算例表明,该方法具有较好的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信